

RB&G ENGINEERING INC.

1435 WEST 820 NORTH PROVO, UT 84601-1343 801 374-5771 Provo 801 521-5771 SLC

LEGACY Parkway

STRUCTURE E-2572

LP OVER MILL CREEK TRAIL

STRUCTURE E-2573

LP OVER MULTI-USE TRAIL & D&RGW RR

Salt Lake & Davis Counties, Utah

Utah Department of Transportation SP-0067(5)0

October 2006

Geotechnical Investigation Report for Structures

October 4, 2006

Mr. Sohail Khan Carter & Burgess 420 East South Temple Suite 342 Salt Lake City, Utah 84111-1321

Reference: Legacy Parkway Project No. SP-0067(5)0

Gentlemen:

A Geotechnical Investigation Report for Structures has been completed for Structures E-2572, LP over Mill Creek Trail and E-2573, LP over Multi-Use Trail & D&RGW RR in Salt Lake and Davis Counties, Utah. The investigation has been conducted in accordance with a proposal submitted to your organization for the work, and the results of the study are summarized in the report transmitted herewith.

We appreciate the opportunity of providing this service for you. If there are any questions relating to the information contained herein, please call.

Sincerely,

	BRRAA .
RB&G ENGINEER	ING, INCO PROFESSIONAL CAL
Buschle	NO.162291 BRADFORD E.
Bradford E. Price, P	.E.
bep/jag	ATE OF UT

1435 WEST 820 NORTH PROVO, UT 84601-1343 PROVO 801-374-5771 SALT LAKE CITY 801-521-5771

Geotechnical Investigation Report for Structures

Legacy Parkway

Structure E-2572

LP over Mill Creek Trail

Structure E-2573 LP over Multi-Use Trail & D&RGW RR

Salt Lake & Davis Counties, Utah

Utah Department of Transportation SP-0067(5)0

October 2006

RB&G ENGINEERING, INC.

-Professional Engineers-

LEGACY PARKWAY

UTAH DEPARTMENT OF TRANSPORTATION SP-0067(5)0

GEOTECHNICAL INVESTIGATION REPORT FOR STRUCTURES

Structure E-2572 -- LP over Mill Creek Trail Structure E-2573 -- LP over Multi-Use Trail & D&RGW RR

TABLE OF CONTENTS

1.0	GENERAL	1
1.1 1. 1. 1.	PROJECT DESCRIPTION	1 1 2 2
2.0	PREVIOUS REPORTS AND INVESTIGATIONS	
2.1 2.2 2.3	PB/FAK GEOTECHNICAL INVESTIGATION REPORT KLEINFELDER GEOTECHNICAL INVESTIGATION DAMES & MOORE PRELIMINARY GEOTECHNICAL STUDY	
3.0	EXISTING FACILITIES	4
4.0	FINDINGS	5
4.1 4.2 4.3 4.4 4.5 4.6 4.7	EXISTING SITE CONDITIONS SURFACE DRAINAGE GEOLOGY GEOLOGIC HAZARDS SOIL MATERIALS HYDROGEOLOGIC CONDITIONS POTENTIALLY HAZARDOUS MATERIALS	
5.0	EARTHQUAKE CONSIDERATIONS	
5.1 5.2	DESIGN CRITERIA LIQUEFACTION AND LATERAL SPREAD	11 12
6.0	FIELD AND LABORATORY TEST DATA	13
6.1 6.2	SUBSURFACE EXPLORATION LABORATORY TESTING	
7.0	STRUCTURES	
7.1 7 7 7.2 7	DESCRIPTION	16 16 16 16 17 18 18 18 18 19 20 20
7	7.2.1.5 Construction Considerations	

	7.2.3 7.2.4	Retaining Walls Lateral Earth Pressures	. 21 . 21
8.0	COF	RROSION INVESTIGATIONS	. 23
9.0	LIM	ITATIONS	. 24
10.0	REF	ERENCES	. 25

FIGURES

Figure 1	VICINITY MAP
Figure 2a	GEOLOGIC MAP A
Figure 2b	GEOLOGIC MAP B
Figures 3a & 3b	SITE PLAN & APPROXIMATE TEST HOLE LOCATIONS

APPENDIX A	
APPENDIX B	Test Hole Logs
	Laboratory Testing
	Surglamontal Costashija Data
APPENDIX U	

LEGACY PARKWAY

UTAH DEPARTMENT OF TRANSPORTATION SP-0067(5)0

GEOTECHNICAL INVESTIGATION REPORT FOR STRUCTURES

Structure E-2572 – LP over Mill Creek Trail Structure E-2573 – LP over Multi-Use Trail & D&RGW RR

1.0 GENERAL

This report presents the results of geotechnical investigations and provides foundation recommendations for the following structures located within the Legacy Parkway project:

- E-2572 Legacy Parkway over Mill Creek Trail
- E-2573 Legacy Parkway over Multi-Use Trail and D&RGW RR

The primary purpose of this investigation is to determine the characteristics of the subsurface material throughout the project area, and to make appropriate foundation design recommendations for the proposed structures. The report is intended to aid designers in evaluating the site and subsurface conditions for foundation design and potential construction problems.

1.1 PROJECT DESCRIPTION

The Legacy Parkway will be a four-lane, limited-access, divided highway extending approximately 14 miles from Interstate 215 at 2100 North in North Salt Lake, northward to the junction of Interstate 15 and U.S. Highway 89 near Farmington (see Figure 1). A multiple-use pedestrian, bicycle, and horse trail will parallel the Parkway.

1.1.1 General

The Mill Creek and D&RGW RR underpass sites are both located in Davis County in Segement 2 of the Legacy Parkway project. Segment 2 begins north of 500 South in West Bountiful, and continues north to a point approximately 1800 feet south of Glover's Lane in Farmington. The Mill Creek underpass site is located at Station LP NB 2356+41 (Sta. LP SB 3356+78) on the north side of 1200 North Street at about 1600 West, in West Bountiful City. The D&RGW RR underpass site is located at about Station LP NB 2445+50 (Sta. LP SB 3447+50) near the westerly limits of Centerville City, adjacent to Sheep Road between Center Street and Parrish Lane (400 North). Structures do not presently exist at the Mill Creek and D&RGW sites.

1.1.2 Proposed Improvements

New structures will be built at locations where the Legacy Parkway roadway and trail system will cross existing streets, waterways, and other facilities. At the Mill Creek and D&RGW RR underpass sites, it is anticipated that box-type structures will be constructed to permit passage of the multi-use trail through the Legacy Parkway embankment. At the Mill Creed site, the structure will be oriented in a northwest-southeast direction. The D&RGW structure will run in an approximately north-south direction. Preliminary drawings of the proposed structures are included for reference in Appendix A.

1.1.3 Climatic Conditions

The climate in the project area is characterized by relatively warm summers and cold winters. The frost depth ranges between 20 to 30 inches. Winter snow often requires plowing, and de-icing salt is regularly deposited on major roadways during the winter months.

2.0 PREVIOUS REPORTS AND INVESTIGATIONS

The following geotechnical reports and investigations have been completed previously by others for this project.

2.1 PB/FAK GEOTECHNICAL INVESTIGATION REPORT

UDOT provided copies of the Geotechnical Reports prepared by Parsons Brinckerhoff Quade & Douglas (PB) for Fluor Ames Kraemer (FAK), LLC as a part of the Design-Build Legacy Parkway Project. The report includes the results of subsurface investigations performed by Kleinfelder, Inc. provides geotechnical and recommendations for the structures contemplated in the original project. It should be noted that the project was divided into five segments for the Design-Build Project. Segment 2 of the Design Build project was to begin about 1000 feet north of Center Street (North Salt Lake) and continue in a northwesterly direction to the vicinity of the Bountiful City landfill. Segment 3 was to begin at the north end of Segment 2 and continue north to about Lund Lane at the border between Centerville and Farmington.

It is our understanding that a structure was initially planned at the D&RGW crossing location during early phases of the Design-Build work, but was later eliminated from the Design-Build project. Before the structure was eliminated, subsurface investigations were completed at the site, and the test hole logs are contained in the PB/FAK Segement 3 Geotechnical Report. No Design-Build test holes were located within about 500 feet of the Mill Creek site.

2.2 KLEINFELDER GEOTECHNICAL INVESTIGATION

It is our understanding the Kleinfelder, Inc. conducted an investigation of the preferred Legacy Parkway alignment for UDOT and the results were submitted in a report dated June 2, 2000. Some of its findings were reproduced in the PB/FAK Design Build reports referenced in Section 2.1 above.

2.3 DAMES & MOORE PRELIMINARY GEOTECHNICAL STUDY

It is our understanding that Dames & Moore completed a geotechnical study for the proposed preliminary Legacy Parkway corridor and presented the results in a 1998 report.

3.0 EXISTING FACILITIES

No buildings presently exist at the Mill Creek underpass site. Bountiful's 1200 North Street is a minor paved roadway that runs in an east-west direction within about 100 to 250 feet south of the proposed structure location. The roadway is underlain by several feet of embankment fill in the area. The nearest buildings are a line of several homes, beginning about 650 feet west of the site along the north side of 1200 North Street. A sewage treatment plant operated by South Davis Sewer is located approximately ¼ mile west of the site. Bountiful Pond is located about 700 feet north of the Mill Creek site. Mill Creek is a small creek flowing in a generally south-to-north direction through the area.

The anticipated D&RGW structure location is presently occupied by the old railroad bed running in a north-south direction along the westerly edge of Centerville. Sheep Road is an unpaved road that parallels the D&RGW line about 60 feet west of the railroad bed. It is our understanding that this road will be realigned to accommodate Legacy Parkway in this area. A power substation is located approximately 400 feet west of the proposed underpass structure, and various overhead power lines run were observed in the area. Some commercial/industrial buildings were also observed about 300 to 400 feet west of the site at the time of the field investigations.

Various buried utility lines are known to exist in the vicinity of the proposed structures, including sewer, water, natural gas, oil/petroleum, and possibly some communications lines.

4.0 FINDINGS

4.1 EXISTING SITE CONDITIONS

The topography is relatively flat throughout Segment 2 and generally slopes down to the west toward the Great Salt Lake. The proposed Legacy Parkway corridor begins just west of the existing I-215 / Redwood Road interchange on the south and continues northward. The southerly portion of the corridor travels along the westerly limits of North Salt Lake, Woods Cross, West Bountiful, and Centerville, about 0.5 to 2 miles west of I-15. North of Parrish Lane in Centerville, the Parkway corridor will be located less than about 0.25 miles west of I-15, with the two corridors essentially parallel continuing north to the I-15 / US-89 interchange in Farmington. The south and north interchanges are already partially constructed. A few industrial and commercial facilities are located along the alignment.

The Mill Creek site is relatively flat, with the natural terrain sloping gently to the northwest. At the Mill Creek site, 1200 North Street is on embankment fill and is elevated about 5 to 7 feet above the surrounding properties. Some trees and brush line Mill Creek, and scattered trees were observed along the roadway. The Mill Creek structure will be located in an area vegetated by weeds, wild grass, and sparse brush at the time of the field investigations.

The natural topography at the D&RGW site is also flat, with a gentle slope to the northwest. The railroad bed is raised about 5 to 6 feet above the surrounding ground. At the time of the field investigations, vegetations along the sides of the railroad bed consisted of wild grass and weeds, with some low brush and occasional trees.

4.2 SURFACE DRAINAGE

Surface drainage in the area generally follows the topography to the west and northwest toward the Great Salt Lake. In addition to the Jordan River and Oil Drain at the south interchange, some creeks, streams, and canals (including Mill Creek) cross the alignment at various locations, creating the potential for flooding. At some locations within Segment 2, the existing ground is covered by water during at least part of the year, creating difficult access conditions. The location of the Mill Creek structure was particularly wet and soft at the time of drilling, as were the low-lying areas adjacent to the railroad fill at the D&RGW site.

4.3 GEOLOGY

The project is located within the Wasatch Front section of the Basin and Range physiographic region. The Wasatch Front consists of a series of down dropped valleys bounded primarily by the Wasatch Mountains on the east and the Great Salt Lake, Utah Lake and the Oquirrh Mountains on the west. The area extends from Juab County in the south up through Salt Lake, Davis, Weber and Box Elder counties to the north.

The general topography of the Wasatch Front is due, in large part, to Basin and Range extensional faulting. The Wasatch Fault is an extensional normal fault which trends northerly along the base of the Wasatch Mountains from Levan in the south, and up into Idaho to the north. Prior to extensional faulting, the region was subjected to compressional forces from the west resulting in extensive thrust faulting and mountain building. Extensional forces are still active today with various segments of the Wasatch Fault capable of generating large earthquakes with magnitudes near 7.4.

The Wasatch Mountains to the east consist predominately of Precambrian to Mesozoic, metamorphic and sedimentary bedrock. The valleys along the Wasatch Front are predominately covered with Pleistocene Lake Bonneville deposits, and younger alluvial fan and stream deposits. The Bonneville Lake Cycle began about 30,000 years ago when the climate was much cooler and wetter. The lake reached its highest elevation of about 5,100 feet, known as the Bonneville shoreline, between 16,000 to 14,500 years ago. From this shoreline, the lake eventually overtopped and breached through unconsolidated sediments near Red Rock Pass sending a catastrophic flood into the Snake River drainage system in southeastern Idaho, about 14,500 years before present. Within about a year, the lake had dropped to an elevation of about 4,740 feet, forming the Provo shoreline. Due to changing climatic conditions, the lake level gradually dropped to the historic levels of its modern day remnant, the Great Salt Lake. The last major high water shoreline of the lake was the Gilbert shoreline which reached an elevation of about 4,250 feet between 11,000 to 10,000 years ago. Historically, the Great Salt Lake has fluctuated between 4,211.9 and about 4,191 feet above sea level.

During Bonneville times thousands of feet of sediment were deposited in the valley. Deposits consist of deep-water silts and clays, shoreline sand and gravels and gravely barrier beach and deltaic deposits. The unconsolidated to semi-consolidated valley fill deposits are thought to range from 2,000 to 5,000 feet thick (Black, and others, 2003; Currey, and others, 1984; Hintze, 1988; Stokes, 1986).

A geologic map of the Central Wasatch Front by Davis (1983) shows the surficial deposits in the proposed Parkway alignment to consist of floodplain and delta deposits (chiefly fine-grained and poorly drained sediments) in the vicinity of the south interchange, Provo Formation and younger lake bottom sediments (clays, silts, sands, and localized offshore bars) through the majority of the project, and landslide deposits near the north interchange. Newer maps of the area (Personius and Scott, 1992; Nelson and Personius, 1993), characterize the predominant surficial geologic deposits throughout the study area as Lake Bonneville lacustrine clay and silt, with Holocene to upper Pleistocene lateral spread deposits at some locations. Post-Bonneville lacustrine and marsh deposits are encountered along the easterly shores of the Great Salt Lake and encroach on the Parkway alignment from the west at some bridge sites. Localized upper Holocene stream alluvium associated with the Jordan River can be found along the shores of the river near the southerly terminus of the project. Bonneville lacustrine sand and gravel may be encountered near the northerly terminus, along with upper Holocene fan alluvium consisting of cobbles and gravel in a sandy matrix.

As shown on Figure 2a, the Mill Creek and D&RGW RR sites both lie near the border of two surficial geologic units mapped by Davis (1983). On the westerly side of the Legacy Parkway alignment in this area, the surficial materials are mapped as salt flat deposits, characterized by high silt, clay, and salt content and by poor drainage characteristics. The deposits mapped on the easterly side of the Parkway are Provo Formation and younger lake bottom sediments, which consist of clays, silts, sands, and localized offshore sand bars. It will be noted from the figure that the Mill Creek site is most likely covered by the salt flat deposits, while the lake bottom soils appear to cover the D&RGW site.

A more recent surficial geologic map by Nelson and Personius (1993) is shown on Figure 2b. On this map, the two sites also lie along the border of two difference geologic units. The deposits west of the Parkway in this area are described as young deposits of silt, clay and sand deposited in Great Salt Lake marshes, low-energy streams, oxbow lakes, and sag ponds resulting from seismic events. The young lake and marsh soils are often rich in organics and may contain localized zones of peat. East of the Parkway alignment, the surficial deposits are mapped as silt and clay with minor fine sand deposited in deep and/or quiet water of the Bonneville lake cycle. The marsh deposits shown on the westerly side of the Parkway are likely underlain by the lake bottom deposits mapped on the easterly side of the alignment.

Harty and Lowe (1992, 2003) prepared maps of several liquefaction-induced landslides along the Wasatch Front, including the North Salt Lake landslide features. The northerly limits of these landslides are located about ½ mile south of the Mill Creek site, and are identified as unit clsp on Figure 2b. The authors of the map noted that they were unable to confirm that the North Salt Lake features are landslides; however, based on surface evidence and geologic evidence provided by others, the deposits were believed to be liquefaction-induced landslides. The literature accompanying the map indicates that the possibility still exists for recurrent movement of the North Salt Lake landslides during earthquake ground shaking.

4.4 GEOLOGIC HAZARDS

Geologic hazards identified within the Legacy Parkway project area include ground shaking, liquefaction-induced lateral spreading and landslides, and subsidence during a moderate to large seismic event on the Salt Lake or Weber segments of the WFZ. Large seismic events on one of the other surrounding less studied faults such as the Great Salt Lake fault may also trigger these hazards.

Due to the proximity of the Parkway to the Great Salt Lake, tilting of the lake during tectonic subsidence will shift the lake toward the east. This subsidence will cause a rise in already high ground-water tables and cause the lake to inundate toward the east. Subsidence and tilting will be greatest nearest the fault and will taper off away from the fault toward the west. Studies by Keaton (1987), and Chang and Smith (1998) have compared the 7.5 magnitude earthquake at Hebgen Lake, Montana in 1959 to a maximum credible earthquake along the Wasatch Front. Keaton's study shows the area near the most eastern extent of Farmington Bay to have the greatest potential for flooding. It should be noted that the magnitude of the earthquake. Ground shaking from surrounding faults or rupture of the Great Salt Lake fault beneath the lake also has the potential to generate wave hazards in the form of seiche (water oscillation waves) or a lake tsunami. The actual hazard potential to the Parkway from these waves is not known. Based on a study by Lin and Wang (1978) the hazard from seiche on the lake is likely low.

Other hazards include shallow ground water and potential flooding. Further discussion of seismic hazards at the Mill Creek and D&RGW sites is provided in Section 5.0.

4.5 SOIL MATERIALS

Borings at the Mill Creek Site generally encountered firm to stiff lean and fat clay with some sand layers and lenses in the upper 60 feet. A medium-dense to dense sand layer ranging from about 4 to 7 feet thick was identified between depths of 60 and 70 feet, and was underlain primarily by clay with some sand layers. The frequency and thickness of the sandy deposits generally increased with depth. The deepest boring extended to a depth of 100 feet (approximate elevation 4113 feet).

Borings at the D&RGW RR site encountered about 3 to 6 feet of sand and gravel fill associated with the railroad bed, followed by firm to stiff lean clay with sand lenses and occasional layers to a depth of about 48 feet. The sand layers increased in frequency and thickness below 45 feet, with lean and fat clay being the other predominant soil types in the bottom half of the borings. The deepest boring completed at the D&RGW site in 2006 extended to a depth of 88 feet (approx. elev. 4134 feet). Several of the borings performed previously at the site by others extended to at least 200 feet, and the deepest of these terminated 247 feet below the ground surface (approx. elev. 3970 feet).

Soil conditions for each site are described in further detail in Section 7.1.2.

4.6 HYDROGEOLOGIC CONDITIONS

Groundwater in the Salt Lake Valley occurs in late Tertiary and Quaternary alluvial and lacustrine basin-fill deposits that range from coarse gravel to clay. Four hydraulically connected aquifers have been identified in the basin sediments: 1) a deep, unconfined aquifer in gravelly deposits along the fronts of the Wasatch Range and Oquirrh Mountains; 2) a deep, confined aquifer in the center of the valley in gravel deposits beneath clay confined beds; 3) a shallow, unconfined aquifer in the center of the valley overlying the confined aquifer; and 4) local perched aquifers located primarily adjacent to mountain fronts.

The hydraulic gradient in the Parkway area generally slopes down in a westerly direction toward the Great Salt Lake. The depth to groundwater was measured in the borings as indicated on the boring logs. At the Mill Creek site, the water level was within about 5 feet of the ground surface at the time of drilling (March 2006). At the D&RGW site, the groundwater was measured between 5.5 and 7 feet below the top of the railroad bed in February 2006. Fluctuations of a few feet can be expected due to typical seasonal

variations. Artesian conditions were encountered in the lower confined aquifers at some locations, including borings at the Mill Creek and D&RGW sites, as noted on the boring logs.

4.7 POTENTIALLY HAZARDOUS MATERIALS

Potentially hazardous materials were not noted during the field investigation. All soil samples were re-examined in the laboratory and odors indicative of contamination were not noted. Potential sources of contamination include the oil drain at the southerly end of the project along with various past and present industrial sites located in the vicinity of the Parkway alignment. The apparent lack of contamination observed by field and lab personnel does not preclude the possible presence of potentially hazardous materials in the project area.

EARTHQUAKE CONSIDERATIONS 5.0

The study area is located within the seismically active Intermountain Seismic Belt, which extends from Arizona to Canada. The nearest potentially active fault is the Weber Segment of the Wasatch Fault Zone (WFZ) located about 1.7 miles west of the Mill Creek site, and 1.2 miles west of the D&RGW site. The Weber segment is capable of generating a magnitude 7.4 earthquake. The Salt Lake City Segment of the WFZ is located about 3.3 miles southeast of the Mill Creek site and 4.6 miles south of the D&RGW site and can generate a magnitude 7.2 earthquake. The West Valley Fault Zone is located about 7.5 miles south of the Mill Creek site (8.9 miles south of the D&RGW site). It is uncertain whether the West Valley Fault Zone has a true independent seismogenic source or if it functions as an antithetic fault to the WFZ.

5.1 **DESIGN CRITERIA**

The Mill Creek site is located at latitude 40.902° North and longitude 111.925° West. USGS-NEHRP probabilistic peak ground acceleration (PGA) values are tabulated below:

i i escas mone gi e and i neuero i i i i i i i i i i i i i i i i i i i				
	10%PE in 50 yr	2%PE in 50 yr		
PGA	26.02	62.71		
0.2 sec SA	61.77	148.94		
1.0 sec SA	21.15	62.19		

Probabilistic ground motion values in %g

The D&RGW RR site is located at latitude 40.919° North and longitude 111.901° West. USGS-NEHRP probabilistic peak ground acceleration (PGA) values are tabulated below:

Probabilistic ground motion values in %g.				
	10%PE in 50 yr	2%PE in 50 yr		
PGA	24.92	63.48		
0.2 sec SA	59.38	149.42		
1.0 sec SA	20.35	62.06		

It should be noted that the USGS-NEHRP mapped values are calculated for "firm rock" sites having a shear wave velocity of 1500 feet per second in the upper 100 feet (MCEER Site Class B/C boundary), and that bedrock ground motions may amplify or attenuate as they propagate through overburden soils.

Borings and testing completed at the site of the proposed structures indicate that the clayey soils in the upper 100 feet at both sites have average undrained shear strengths of slightly greater than 1,000 psf. Based on this information, it is recommended that MCEER Site Class D be used for seismic design at the Mill Creek and D&RGW underpass sites..

As part of the current Legacy Parkway project, Kleinfelder, Inc. developed site specific horizontal and vertical acceleration response spectra for the 1250 West bridge site and the State Street bridge site. It is our understanding that Kleinfelder will provide a separate report with conclusions and recommendations for applying the site-specific spectra at other sites on the project.

5.2 LIQUEFACTION AND LATERAL SPREAD

Liquefaction analyses were performed using the "Simplified Procedure" developed by Seed and Idriss (1971). This procedure involves determining the seismic shear stress ratio induced by an earthquake and comparing it with the seismic shear stress ratio required to cause liquefaction. Recommended refinements for the "Simplified Procedure" for SPT data presented at the 1996 NCEER workshop (Youd et al., 1997) were applied.

An evaluation of borings and testing indicates that several soil layers may liquefy during the seismic event having a 2 percent probability of exceedance in 50 years. Soil layers showing potential for liquefaction during the design event are noted on the boring logs in Appendix B. Layer thicknesses and potential liquefaction-induced settlement corresponding to volumetric strain are summarized below.

0.1		Thickness of Liqu (ft)	iefiable Layers	Calculated Liquefaction Settlement (in)	
Site	Boring No.	Within Depth Investigated	Within Upper 50 Feet	Within Depth Investigated	Within Upper 50 Feet
Mill Creek	RSB-39-624	10.5	4.5	2.1	1.0
	RSB-39-625	5	1	0.8	0.3
	RSB-39-626	10	3	0.8	0.7
	RSB-39-627	13.5	2	2.1	0.5
D&RGW RR	RSB-X3-628	6	1	1.4	0.4
	RSB-X3-629	10	3	1.6	0.7

A review of the boring logs does not identify a continuous layer susceptible to lateral spread at either site. It is our opinion that the potential for lateral spread at these sites is very low, and lateral spread mitigation is not necessary for the proposed structures. The principal consequence of liquefaction at these sites is expected to be ground settlements, estimated to range in magnitude from about 0.8 to 2.1 inches as shown on the table.

6.0 FIELD AND LABORATORY TEST DATA

6.1 SUBSURFACE EXPLORATION

Subsurface investigations performed at the bridge sites include borings performed by Kleinfelder in conjunction with the Design-Build project, along with supplemental borings performed in 2006 for the current project.

Boring logs for bridge subsurface investigations performed in 2006 are included in Appendix B of this report. Test holes performed by RB&G Engineering in 2006 are labeled with the prefix "RSB" (or "RSC" for CPT holes, where applicable), followed by a number identifying the bridge site or structure, then by a hole number in the 600 series. Logs of subsurface investigations performed by Kleinfelder are also reproduced in Appendix B and are labeled with the prefix "SB" for borings and "SC" for CPT holes, followed by the Design-Build bridge number, then the boring number. It will be noted that the Mill Creek site was designated with the number "39" for subsurface exploration numbering purposes. Borings performed for the Design-Build project at the D&RGW site are labeled with the numbers "13" and "14", in reference to the numbers of the structures initially planned for the site. For the current project, the D&RGW site was numbered "X3".

For all structure borings drilled in 2006, the subsurface investigation was performed using a CME 55 rotary drill rig with a tri-cone rock bit and NW casing to advance the boring and water as the drilling fluid. Sampling was generally performed at 5-foot intervals. At some locations, sampling was performed at closer intervals to evaluate liquefaction hazard for loose cohesionless soils in the upper 30 to 40 feet. Disturbed samples were obtained by driving a 2-inch split spoon sampling tube through a distance of 18 inches using a 140-pound weight dropped from a distance of 30 inches. The drill rig used for each boring is noted on the boring log. The CME-55 No. 2 rig uses a rope and cathead hammer which was determined by UDOT to have an average energy ratio of about 55% in the spring of 2006.

The number of hammer blows required to drive the sampling spoon through each 6 inches of penetration is shown on the boring logs. The sum of the last two blow counts, which represents the number of blows to drive the sampling spoon through 12 inches, is defined as the standard penetration value. The standard penetration value, corrected for overburden and hammer energy, provides a good indication of the in-place density of sandy material; however, it only provides an indication of the relative stiffness of

cohesive material, since the penetration resistance of materials of this type is a function of the moisture content. Considerable care must be exercised in interpreting the standard penetration value in gravelly-type soils, particularly where the size of granular particles exceeds the inside diameter of the sampling spoon. If the spoon can be driven through the full 18 inches with a reasonable core recovery, the standard penetration value provides a good indication of the in-place density of gravelly-type material. For materials containing more than 35% gravel size particles, the density descriptions shown on the boring logs were developed based on correlations between relative density and standard penetration value for gravelly soils.

At some locations within the project it was not possible to drive the sampling spoon through the full 18 inches at some sampling depths. Where the sampling tube could not be driven through the full 18 inches, the number of blows to drive the spoon through a given depth of penetration is shown on the boring logs.

Undisturbed samples were obtained by pushing a 2.62-inch (inside diameter) thin-walled sampling tube into the subsurface material using the hydraulic pressure on the drill rig. The locations at which the undisturbed samples were obtained are shown on the boring logs.

Miniature vane shear (torvane) tests, which provide an indication of the undrained shearing strength of cohesive materials, were performed on samples of the cohesive soils during the field investigations. The results of these tests are shown on the boring logs as the torvane value in tsf.

Each sample obtained in the field was classified in the laboratory according to the Unified Soil Classification System. The symbols designating soil types according to this system are presented on the boring logs. A description of the Unified Soil Classification System is included with the logs (see Appendix B), and the meaning of the various symbols shown on the logs can be obtained from this figure. Laboratory-tested samples were also classified according to the AASHTO Classification System, and the symbols designating the soil types according to this system are also presented on the boring logs.

6.2 LABORATORY TESTING

Laboratory tests performed during this investigation to define the characteristics of the subsurface material included:

1) Mechanical Analysis

- 2) Density
- 3) Natural Moisture Content
- 4) Atterberg Limits
- 5) Unconfined Compressive Strength
- 6) Triaxial Shear
- 7) Consolidation
- 8) Direct Shear
- 9) pH, Resistivity, Sulfates, and Chlorides

Laboratory testing was performed in accordance with applicable standards published by the American Society for Testing and Materials (ASTM) and/or the American Association of State Highway and Transportation Officials (AASHTO).

The results of laboratory tests performed during this investigation are presented on the boring logs and summarized on tables located in Appendix C of this report. Plots of applicable test data are also included in Appendix C.

7.0 STRUCTURES

7.1 DESCRIPTION

7.1.1 General

It is our understanding that Structures E-2572 and E-2573 will both be box culvert type structures which will allow portions of the multi-use trail system to pass beneath Legacy Parkway. The maximum cover over the structures is expected to be less than about five feet.

It is anticipated that the Mill Creek underpass will consist of two cast-in-place concrete boxes; each about 66 feet in length and having inside dimensions of about 20 feet wide by 10 feet high. An open trail area about 35 feet wide is expected to exist in the Legacy Parkway median area between the two box sections. The structural engineer has informed us that the maximum Strength I bearing pressure beneath the structures will be about 5.7 ksf.

The D&RGW RR trail underpass is expected to be a single cast-in-place box structure about 466 feet long, with an inside width of about 28 feet. Preliminary drawings show that the inside height of the structure will vary from about 8 to 10 feet, with a two-foot step up in grade between the equestrian trail and the pedestrian trail. It is our understanding that the maximum Strength I bearing pressure on soils beneath this structure will be approximately 5.9 ksf.

7.1.2 Subsurface Conditions

7.1.2.1 Mill Creek Site

Boring RSB-39-624 was drilled near the anticipated location of the northwest end of the underpass. This boring encountered firm to stiff lean clay with silt lenses in the upper 36 feet, followed by alternating layers of medium-dense sand and stiff lean clay up to 5 feet thick to a depth of about 50 feet. Firm fat clay was identified between about 50 and 57 feet, then stiff lean clay to about 64 feet. A zone of medium-dense silty sand with thin clay layers was encountered between 64 and 71 feet, followed by stiff lean clay with occasional sand layers to the bottom of the boring at a depth of 79.5 feet (elev. 4133 feet). Borings RSB-39-625 and 626 were drilled near the interior ends of the two anticipated structures (in the Legacy Parkway center median area). Each boring encountered 14 feet of firm to stiff lean clay with thin sand and silt layers, followed by firm to stiff fat clay with sand and silt lenses to an average depth of 47 feet. The soil deposits below 47 feet were predominantly firm to stiff clay, with layers of medium-dense to dense sand up to about 5 feet thick. Boring RSB-39-625 terminated at a depth of 96.5 feet (elev. 4116 feet), and Boring RSB-39-626 terminated at 85 feet (about elev. 4127 feet).

Boring RSB-39-627 was located near the southeast end of the anticipated underpass. The subsurface profile in this boring consisted of about 12 feet of stiff lean clay with sand lenses, followed by firm to stiff fat clay to a depth of 38 feet. A two- foot zone of medium-dense sand was identified between 38 and 40 feet, and was underlain by stiff lean clay with some sand layers to about 62 feet. Another deposit of medium-dense sand was encountered between 62 and 67 feet, followed by firm to stiff lean clay with occasional sand layers up to about 3 feet thick to the bottom of the boring at a depth of 1000 feet (about elev. 4113 feet).

Samples of lean clay obtained from the borings were tested in the laboratory, and were found to have liquid limits ranging from 30 to 47 (average of 41), and plasticity indices between 12 and 26 (average of 20). The liquid limit of the fat clay samples was between 51 and 73 and the plasticity index ranged from 31 to 49.

7.1.2.2 D&RGW RR Site

Borings and CPT holes completed by others for the Design-Build project included several test holes near the proposed D&RGW RR underpass structure. These explorations characterized the subsurface soils as predominantly soft to stiff cohesive soils. Some relatively thick (greater than about 10 feet) deposits of medium-dense sand appear on the boring logs; however, the continuous CPT profiles suggest that the sand layers are usually less than 6 to 7 feet thick. The deepest CPT extended to about 176 feet below the ground surface, and the deepest boring reached a depth of 247 feet (elev. 3970 feet).

Boring RSB-X3-628 was drilled at the south end of the proposed structure, and encountered 3 feet of granular fill material, followed by firm to stiff lean

clay to about 48 feet. A zone of firm to stiff fat clay was identified between 28 and 58 feet, followed by a deposit of silty sand about 3 feet thick. Below 61 feet, the boring encountered firm to stiff lean clay with sand layers up to 2 feet thick. The boring terminated at a depth of 83 feet (elev. 4138 feet).

Boring RSB-X3-629 was drilled about 100 feet south of the north end of the structure, and this boring encountered 6 feet of granular fill, underlain by firm to stiff lean clay with sand layers up to 3 feet thick to a depth of about 58 feet. Medium-dense to dense silty sand was the predominant soil type between 58 and 72 feet, followed by firm to stiff lean clay with sand layers up to 3 feet thick to the bottom of the boring at a depth of 88 feet (about elev. 4134 feet).

Samples of the lean clay from Borings RSB-X3-628 and 629 were tested in the laboratory, and the liquid limit was determined to range from 33 to 49, with the plasticity index between 15 and 28. One sample of fat clay was tested, and this sample had a liquid limit of 55 and a plasticity index of 32.

7.1.3 Groundwater Conditions

The shallow static groundwater level was encountered at a depth of about 5 feet (approx. elev. 4207.5 feet) at the Mill Creek site at the time of drilling (March 2006). At the D&RGW RR site, the shallow groundwater was between elevations 4215 and 4216 feet (5.6 to 6.7 feet below the top of the existing railroad bed) at the time of drilling in February 2006. It is anticipated that up to two feet of groundwater fluctuation may occur due to typical seasonal variations in precipitation and climatic cycles. Greater fluctuations are possible under unusual environmental conditions.

7.2 RECOMMENDATIONS

7.2.1 Bridge Structures

Potential foundation types at the Mill Creek and D&RGW RR underpass sites include shallow foundations, such as spread footings, and deep foundations, such as drilled shafts or driven piles. It is anticipated that the bottom of each culvert can be designed as a mat foundation. This type of shallow foundation will be significantly more cost-effective than deep foundations. Recommendations for shallow foundations are summarized below. Recommendations for deep foundations can provided for the underpass sites if needed.

7.2.1.1 Foundation Design

The bottom of the box structures are expected to be between elevations 4211 and 4212 feet at the Mill Creek site, and between elevations 4212 and 4215 feet at the D&RGW site. The soils encountered at these elevations are predominantly firm to stiff lean clays. It is anticipated that the bottom of each concrete box underpass structure will act as a mat foundation, and that the bearing pressures at the bottom of each culvert will generally be somewhat less than the pressures induced in the subgrade beneath the surrounding embankment fill.

Bearing capacity for the underpass box structures will be controlled by the firm to stiff lean clay encountered in the upper 20 to 40 feet of the subsurface profile at each site. The results of field and laboratory testing indicate that these soils have a short-term nominal bearing resistance of about 5,140 psf at the Mill Creek site, and about 5,400 psf at the D&RG RR site. The Strength I bearing resistance can be estimated by multiplying the nominal resistance by a resistance factor of 0.50. These bearing resistance values are applicable to the structure placed on existing subgrade soils prior to placement of roadway embankment fill around the structure.

It should be noted that the placement of roadway embankment fill will consolidate subgrade soils, and the clayey soils will gain strength with consolidation. If roadway embankments adjacent to the underpass are constructed in such a manner that loads from the roadway fill weight do not exceed the bearing resistance of the subgrade, bearing resistance will not be critical for the structure. Staged construction, lightweight embankment fill, or subgrade reinforcement/modification may be necessary to provide sufficient bearing resistance for the new fill, depending upon fill heights. Any subgrade modification or staged construction recommendations provided by Kleinfelder for the embankments in these areas should also be considered applicable to the structure foundation footprints.

A coefficient of subgrade reaction of 50 pci is recommended for concrete supported directly on the subgrade clay soils. This estimated coefficient of subgrade reaction is for a 12-inch square footing area and is based on typical values for the soils encountered at the sites. The coefficient of subgrade reaction can be increased to 100 pci if at least one foot of sandy gravel fill is placed beneath the concrete.

7.2.1.2 Foundation Settlement

It is anticipated that significant consolidation settlement will occur due to the placement of new roadway embankment fill adjacent to and on top of the underpass structures, and that differential and total settlement considerations may control the structural design. It is our understanding that Kleinfelder is providing settlement estimates and settlement mitigation recommendations for embankments throughout the project. If the structures cannot be designed to tolerate the anticipated settlements, it may be advisable to preload the foundation subgrade area with temporary embankment fill, allow consolidation to occur, and then excavate the temporary fill to construct the structures.

Liquefaction of loose non-plastic soil deposits due to the design event may cause settlement related to volumetric strain. Estimated ground settlements due to liquefaction are discussed in Section 5.0. Based on these estimates, it is anticipated that structures may experience up to about two inches of settlement due to liquefaction in the design seismic event.

7.2.1.3 Construction Considerations

As a minimum, the upper 6 inches should be stripped from the foundation area to remove excess organic matter. Following foundation excavation, the area should be proof rolled with light ground pressure equipment. Soft areas should be over excavated and stabilized.

Based on anticipated foundation elevations and groundwater levels encountered in the borings, some dewatering may be necessary for construction of the underpass structures. It is recommended that the groundwater be lowered to a depth of 2 feet below the bottom of the excavations. It is anticipated that dewatering can best be achieved using sumps and drain trenches where clay exists at the foundation level.

Soils at the bottom of excavations may be too soft to provide an adequate working surface. Stabilization methods will depend upon conditions

encountered. Moderately soft areas can be stabilized by over excavating the foundation footprint to a depth of about 1 foot, placing a geotextile fabric such as Mirafi 500X or equal and backfilling with compacted sandy gravel. Very soft areas may be stabilized by tamping cobble rock (preferably angular to subangular) into the subgrade as needed. As a minimum, it is recommended that a four-inch layer of granular borrow be placed at the bottom of excavations to provide a working platform.

Depending upon construction sequence and methods employed, excavation and shoring of embankment preload fill may be necessary. Maximum excavation slopes in compacted granular fill material of 1H:1V can be used for temporary cuts less than 20 feet deep. For temporary cuts between 20 and 30 feet deep, 1.5H:1V cut slopes or flatter should be used for the entire depth of the cut. The stability of cuts in uncompacted fill and/or natural subgrade soils should be evaluated on a case-by-case basis.

We recommend that preconstruction surveys and vibration monitoring be performed for any critical structures or utilities located within 500 feet of the construction areas.

7.2.2 Embankments

Analyses and recommendations for embankments are provided in a separate report by Kleinfelder.

7.2.3 Retaining Walls

Analyses and recommendations for retaining walls are provided in a separate report by Kleinfelder.

7.2.4 Lateral Earth Pressures

Lateral earth pressures can generally be calculated using the equation

$$P = \frac{1}{2} \gamma K H^2$$

Where P = total lateral force on the wall, plfK = earth pressure coefficient

 γ = unit weight of the soil (depends on fill material)

H =height of the wall

The earth pressure coefficient used in designing the walls will depend upon whether the wall is free to move during backfilling operations, or whether the wall is restrained during backfilling. If the wall is free to move away from the soil during backfilling operations, we recommend that an active earth pressure coefficient be used in the above equation to calculate the lateral earth pressures. If the walls are restrained or braced from movement during backfilling (as is generally the case with box culverts and similar structures), we recommend that an at-rest earth pressure coefficient be used to calculate the lateral earth pressures. A passive earth pressure coefficient should be used to calculate the lateral soil resistance where the wall is being pushed toward the soil. It should be recognized that the pressures, calculated by the above equation, are earth pressures only and do not include hydrostatic pressures. Where hydrostatic pressures may exist behind a retaining structure, we recommend either the wall be designed to resist hydrostatic pressure, or that a drainage system be placed behind the wall to prevent the development of hydrostatic pressures.

Lateral earth pressure coefficients and other recommendations for computing lateral earth pressures are included in Appendix D. A general earth pressure coefficient has been provided for calculation of earth pressures where mechanical compaction equipment is expected to be operated near non-yielding walls less than about 8 feet high. This scenario is anticipated during placement of fill around culverts. The residual pressure from compaction equipment can be reduced by limiting the proximity and weight of compacting equipment near culvert walls.

Recommendations based on the Mononobe-Okabe approach for active and passive seismic lateral earth forces are included in Appendix D. For non-yielding walls, recommended equations for calculating the dynamic thrust and dynamic overturning moment are also provided.

8.0 CORROSION INVESTIGATIONS

In order to obtain an indication of the corrosive nature of the subsurface material at these sites, resistivity, pH, sulfate, and chloride tests were performed on soil samples obtained in the test holes. The results of these tests are tabulated below:

Structure	Test Hole	Depth (ft)	Soil Type	Resistivity ohm-cm	рН	Sulfate (ppm)	Chloride (ppm)
E-2572	RSB-39-624	3-4.5	Lean Clay	15,573	8.6	1,542	615
Mill Creek	RSB-39-626	6-7.5	Lean Clay	7,786	8.4	598	415
E-2573 D&RGW	RSB-X3-628	5-6.5	Lean Clay	11,680	9.1	366	190

The following table taken from the Bureau of Reclamation Concrete Manual indicates the amount of sulfate producing adverse effects on concrete in contact with soil containing sulfate.

Relative Degree of Sulfate Attack	Percent Water-Soluble Sulfate (as SO₄) in Soil Samples	mg/l Sulfate (as SO₄) in Water Samples
Negligible	0.00 to 0.10	0 to 150
Positive ¹	0.10 to 0.20	150 to 1,500
Severe ²	0.20 to 2.00	1,500 to 10,000
Very Severe ³	2.00 or more	10,000 or more

1 Use type II cement.

2 Use type V cement, or approved combination of portland cement and pozzolan which has been shown by tests to provide comparable sulfate resistance when used in concrete.

3 Use type V cement plus approved pozzolan which has been determined by tests to improve sulfate resistance when used in concrete with type V cement.

The water-soluble sulfate content in one sample at the Mill Creek site was about 0.15 percent, and a positive degree of sulfate attack should be expected. Type II cement is strongly recommended for concrete in contact with soil at the Mill Creek site. Based upon the above tests, Type I or Type II cement may be used for concrete at the D&RGW RR site; however Type II cement is preferred for its superior resistance to deterioration.

9.0 LIMITATIONS

The conclusions and recommendations presented in this report are based upon the results of the field and laboratory tests. It should be recognized that soil materials are inherently heterogeneous and that conditions may exist throughout this site which were not defined during this investigation. If during construction, conditions are encountered which appear to be different than those presented in this report, it is requested that we be advised in order that appropriate action may be taken.

The information contained in this report is provided for the specific location and purpose of the client named herein and is not intended or suitable for reuse by any other person or entity whether for the specified use, or for any other use. Any such unauthorized reuse, by any other party is at that party's sole risk and RB&G Engineering, Inc. does not accept any liability or responsibility for its use.

- AASHTO, 2006. AASHTO LRFD bridge design specifications, 3rd edition with 2006 interim revisions, Washington, D.C.
- Bartlett, S.F., and Youd, T.L., 1992, Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spreads, Technical Report NCEER-92-0021, August 17, 1992.
- Black B.D., Hecker S., Hylland, M.D., Christenson, G.E., McDonald, G.N., 2003, Quaternary fault and fold database and map of Utah: Utah Geological Survey, map 193DM scale 1:500,000.
- Chang, W., and Smith, R.B., 1998, Potential for tectonically induced tilting and flooding by the Great Salt Lake, Utah, from large earthquakes on the Wasatch fault: Proceedings volume
 Basin and Range Province seismic-hazards summit: Utah Geological Survey Miscellaneous Publication 98-2.
- Currey, D.R. Atwood, G. And Mabey, D.R., 1984, Major levels of the Great Salt Lake and Lake Bonneville: Utah Geological and Mineral Survey Map 73, scale 1:750,000.
- Davis, F.D., 1983, Geologic map of the central Wasatch Front, Utah: Utah Geological and Mineral Survey Map 54-A, scale 1:100,000.
- Harty, K.M., and Lowe, M., 2003, Geologic evaluation and hazard potential of liquefactioninduced landslides along the Wasatch Front, Utah: Utah Geological Survey Special Study 104, 40 p.
- Hintze, L.F. 1988, Geologic history of Utah: Brigham Young University Geology Studies Special Publication 7, 202 p. (reprinted 1993.).
- Keaton, J.R., 1987, Potential consequences of earthquake-induced regional tectonic deformation along the Wasatch Front, North-Central Utah: Logan, Utah State Universitym Final technical report to the U.S. Geological Survey, National Earthquake Hazards Reduction Program, Grant 14-08-0001-G1174.
- Lin, A., and Wang, P., 1978, Wind tides of the Great Salt Lake: Utah Geology, v. 5, no. 1, p. 17-25.

RB&G ENGINEERING, INC. Provo, Utah

- Nelson, A.R., and Personius, S.F., 1993, Surficial geologic map of the Weber segment of the Wasatch fault zone, Weber and Davis Counties, Utah: U.S. Geological Survey Miscellaneous Investigations Series Map I-2199 scale 1:50,000.
- Personius, S.F., and Scott, W.E., 1992, Surficial geologic map of the Salt Lake City segment and parts of adjacent segments of the wasatch fault zone, Davis, Salt Lake, and Utah Counties, Utah: U.S. Geological Survey Miscellaneous Investigations Series Map I-2106 scale 1:50,000.
- Seed, H.B., and Idriss, I.M., 1971, "Simplified Procedure for Evaluating Soil Liquefaction Potential," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, p. 1249-1273.
- Seed, H.B., and Idriss, I.M., 1982, "Ground Motions and Soil Liquefaction During Earthquakes," Earthquake Engineering Research Institute Monograph.
- Stokes, W.L., 1986, Geology of Utah: Utah Museum of Natural History and Utah Geological and Mineral Survey, 307 p.
- United States Geological Survey, 2002, National Seismic Hazard Mapping Project, http://eqint.cr.usgs.gov/eq/html/lookup-2002-interp.html, (July 2006).
- Youd, T.L., Hansen, C.M., and Bartlett, S.F., 2002, "Revised MLR Equations for Prediction of Lateral Spread Displacement," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 128, no 12, p. 1007-1017.
- Youd, T.L., Idriss, I.M. Andrus, R.D. Arango, I., Castro, G., Christian, J.T., Dobry, R., Liam Finn, W.D.L., Harder, L.F., Jr., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H., II, 1997, "Summary Report," Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Center for Earthquake Engineering Research Technical Report NCEER-97-0022, p. 1-40.

FIGURES

Figure 2a Geologic Map A Mill Creek and D&RGW RR Sites Legacy Parkway Salt Lake / Davis Counties, Utah

Map modified from: Davis, 1983 Utah Geological and Mineral Survey

RB&G ENGINEERING INC. Provo, Utah Figure 2b Geologic Map B Mill Creek and D&RGW RR Sites Legacy Parkway Salt Lake / Davis Counties, Utah Map modified from: Nelson & Personius, 1993 Utah Geological Survey

Figure 3a. SITE PLAN & TEST HOLE LOCATIONS Legacy Parkway - Structure E-2572 (Legacy Parkway Over Mill Creek Trail) Salt Lake/Davis County, Utah

Figure 3b. SITE PLAN & TEST HOLE LOCATIONS Legacy Parkway - Structure E-2573 (Legacy Parkway Over Multi-Use Trail & D&RGW RR) Salt Lake/Davis County, Utah APPENDIX A Structure Drawings

APPENDIX B Test Hole Logs

LP OVER MILL CREEK TRAIL

E-2572

CLIE	T: U	TAH	DE	PA	RTMENT	OF TRAN	SPORTATION	PROJE	CT NU	IMBE	R: 2	2006	01.	139		
LOCA	ATION:	N-	370	6,3	70, E~56,	344	CASING	DATE S	START	ED:	4	3/13/	06			-
DRIL	ER.				ON CON	J. Z / IN.VV	CASING	DATE C	DEL	EVAT		3/14/	06	41		-
DEPT	HTO	WAT	ER	- 11		5.0'	LOGGE	DBY	NI	RAII	EY	G.		SLE	F	
	1		Γ	-	Sample						At	ter.	Gr	adati	on	
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Material Description		Dry Density (pcf)	Moisture Content (%)	iquid Limit	last. Index	Sravel (%)	Sand (%)	It/Clay (%)	Other Tests
210 -	-	17		16	2,2,3,(8) 0.60	CL	gray/gray-brown, very moist, stiff					<u>a.</u>			S	
Z.	5-		X	11	Pushed 0.55	CL	gray, moist, stiff									
205 -		11		11	4,5,6,(17) 0.70	CL	brown, moist, stiff									
	10-	1	X	12	Pushed 0.62	CL (A-7-6(26))	red-brown, moist, stiff		89	30.7	46	23	0	1	99	CT
200 -				14	3,2,3,(8) 0.51	CL	gray-brown, moist, stiff									
1195 -	15-	[] []	X	15	Pushed 0.50	CL (A-7-6(26))	black, moist, firm		86.4	31.2	44	25	0	3	97	TS UC
	20-			10	2.2.3.(6)	~	LEAN CLAY W/SILTT TO 6" APART	LENSES 0.13"								
190 -	-			18	0.48	CL.	dk. gray, moist, firm									
4185 —	25-		X	15	Pushed 0.38	CL (A-7-6(20))	dk. gray, moist, firm		89.4	32.5	41	21	0	8	92	CT UC
180 -	30-			12	2,1,2,(3) 0.34	CL	gray, moist, firm									
	35-		X	16	0.54 Pushed	CL SM	black, moist, stiff									
	40-			18	7 9 9 (16)	SM	SILTY SAND			23.7		NP	0	85	15	
170 -		11/1				ML,CL	gray, very moist, firm INTERBEDDED LAYE SANDY SILT & LEAN	ERS OF CLAY 2" TO								
-	45-		X	18	0.72 Pushed	ML,CL SP-SM	4" THICK gray, moist, stiff									
-165 -	-			10	10,15,20,(28)	94-2W	gray, wet, dense SAND W/SILT									
Γ	TOR			1	RB&G		LEGEND: DISTURBED SAMPLE	Blow Count per (N1)60 Value Torvane (tsf)	6"	-		OTH UC = CT =	ER TE Unco Cons	STS nfined	Comp	pressi

PROJ	JECT:	LEG	AC	Y P.	ARKWAY	- E-2572 (OF TRAN	L.P. OVER M-USE	TRAIL NEAR MILL CRK.)	PROJE	CT NU		R: 2	2006	SHE	ET	2 0	F 2
LOCA	ATION:	N~	376	5,37	0, E ~56,	344			DATE S	TART	ED:	3	3/13/	06			
DRIL	LING	ETH	OD:	0	ME-55 N	0.2/N.W	. CASING		DATE C	OMP	LETE	D: 3	3/14/	06			
DRIL	LER:	D. SA	MF	sc	ON				GROUN	DEL	EVAT	ION	42	12.4	4'		_
DEPT	HTO	WATE	R-	IN	ITIAL: ¥	5.0'	AFTER 24 H	OURS: X ARTESIAN'	LOGGE	DBY	N. I	BAIL	EY,	G. I	PEA	SLE	E
		>	_	_	Sample					ity	(%)	Att	er.	Gra	adati	on	its
Elev. (ft)	Depth (ft)	Litholog	Type	Rec. (in)	See Legend	USCS (AASHTO)	N	laterial Description		Dry Dens (pcf)	Moisture Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tes
4160 -			X	7	Pushed 0.42	CH (A-7-6(55))	gray, moist, firm	FAT CLAY		73.1	48.3	73	49	0	2	98	СТ
4155 -	60 -			3	8,8,10,(13) 0.59	CL	gray, moist, stiff	LEAN CLAY W/SILTY SAN LENSES	D								
4150 -	65		X	17 20	Pushed 7,14,9,(16) 0.36	CL SM SM	dk. gray, wet dk. gray, wet, med. dense	SILTY SAND W/CLAY LEN	SES &	-							
4145 -	70-			14	5,8,15,(16)	SM	gray, wet, med. dense	LAYERS TO 3" THICK									
4140 -	75		X	17	Pushed 0.65	CL (A-6(15))	brown, moist, stiff	LEAN CLAY		91.3	29.5	35	14	0	1	99	СТ
4135 -	80-			20	6,9,11,(13) 0.65	SC CL	brown, wet, med, dense gray, moist, stiff	CLAYEY SAND LEAN CLAY		_							
4130 -																	
4125 -	85-																
	90-																
4120 -	95-																
4115 -																	
[RBG	, E	EN	l Gl	RB&G	ING	LEGEND: DISTURBE	D SAMPLE	ow Count per 1)60 Value orvane (tsf)	6"			OTH UC = CT = DS = TS =	ER TE Unco Cons Direc Triaxi	STS onfined olidation t Sheat al Sheat	Com on ir ar	pressio

DR PRO.	JECT:	LEG	GAC	YF	OG PARKWAY	- E-2572 (L.P. OVER M-USE	TRAIL NEAR MILL CRK.)	BO	RIN	GN	0.	R	SB	-39)-6 1 0	25 F 2
CLIE	NT: <u>U</u>	TAH	DE	PA	RTMENT	OF TRAN	SPORTATION		PROJE	CT NI	JMBE	R: _	2006	601.	139		
LOCA	ATION:	N	-37	6,34	47, E~56,	400	CASING		DATE S	TART	ED:		3/14/	/06			_
DRIL		DS	AM	PS		0.271.00	. CASING		GROUN		EVAT		5/16/	00	1'		
DEPT	TH TO	WAT	ER	- IN		~5.0'	AFTER 24 HO	OURS: ARTESIAN'	LOGGE	DBY	: G.I	PEA	SLE	EF	4		
	1		T		Sample	Э						At	ter.	Gr	adat	ion	0
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Ma	aterial Description		Dry Densit (pcf)	Moisture Content (%	-iquid Limit	Plast. Index	Gravel (%)	Sand (%)	ilt/Clay (%)	Other Test
4210 -	-			16	1,2,3,(8) 0.35	CL	dk. brown to tan, moist, firm	organics in top 12"								0	
	5-			11	4,5,8,(20) 0.86	CL	lt. gray, moist, stiff	LEAN CLAY									
4205 -			X	14	Pushed 0.83	CL (A-7-6(24)) SM	red-brown, moist, stiff	SILTY SAND		98.7	26.3	44	24	0	5	95	CT UC
	10-	1		16	3,3,4,(10) 0.43	CL	red-brown, moist, firm	LEAN CLAY W/SAND LENS	ES								
4200 -			X	13	Pushed 0.52	CL	brown, moist, stiff										
4195 -	15-			17	2,2,4,(7) 0.51	СН	gray-green, moist, firm to stiff										
-	20-		X	19	Pushed 0.56	CH (A-7-6(25))	dk. gray, moisl, stiff	FAT CLAY W/SAND & SANE LENSES	0	82.4	38.7	51	31	0	20	80	CT UC
4190 -	25-			18	1,1,5,(6) 0.53	СН	dk. gray, moisl, stiff										
4185 -	30 -		X	13	Pushed 0.54	СН	gray, moist, stiff										
4180 - - -	35 -			19	4,3,3,(5) 0.40	СН	gray, moist, firm										
4175 -	40			16	5,5,5,(9)	СН	gray, very moist, firm	FAT CLAY W/SILTY SAND I & LAYERS TO 2" THICK & 1 12" APART	ENSES "TO								
4170 -	- - - - - - - - - - - - - - - - - - -		X	12 0	Pushed 0.71 6,9,12,(17)	CH (A-7-6(39)) -	green-gray, moist, stiff				24.9	60	42	0	13	87	
4165 -				14	4,8,8,(12) 0.22	CL	gray, moist, soft	SANDY LEAN CLAY W/SAN LENSES 0.25" TO 4" APART			22.4	30	12	0	28	72	
Γ	RB		EN		RB&G	ING	LEGEND: DISTURBED	D SAMPLE 2,3,2,(6) ← Blow 0.45 ← (N₁)	v Count per 60 Value vane (tsf)	6"			OTH UC = CT = DS =	ER TE Unco Cons Direc	STS onfined olidati	1 Com ion ar	pressio
	C		CI	1	INC.		UNDISTURBED	SAMPLE PUSHED	ne (tsf)				15=	= Pot = Pot	tential tential eral S	Liquef Liquef pread	action

LOC/	ATION: LING M	N~:	376, DD:	347, E ~56, CME-55 N	400 0.2/N.W	/. CASING		DATE S	TART	ED:	D: 3	s/14/	06	-		_
DRIL	LER:	D. SA	MPS	SON		GROUN	ID ELI	EVAT	ION	42	12.4	4'	_			
DEPT	DEPTH TO WATER - INITIAL: 2 ~5.0' AFTER 24 HOURS: ARTE							LOGGE	DBY	<u>G</u> .	PEA	SLE	E	_	_	
Elev. (ft)	Depth (ft)	Lithology	Type Rec (in)	See Legend	USCS (AASHTO)	Μ	laterial Description		Dry Density (pcf)	Moisture Content (%)	quid Limit	ast. Index 9	iravel (%)	adati (%) pues	IVClay (%)	Other Tests
4160 -											C	Id	0		Si	
- - 4155 -	55		X 14	Pushed 0.66	CL (A-6(8))	gray, moist, stiff	SANDY LEAN CLAY W/SAN LENSES 0.25" TO 4" APAR"	ND T	101.7	22.8	32	14	0	31	79	U
	60-		14	7,12,16,(20)	CL	gray, moist, stiff										
4150 -	-						LEAN CLAY									
4145 -	65 -		X 14 18	Pushed 15,20,14,(23)	CL SP-SM SP-SM	gray, wet gray, wet, dense	SAND W/SILT									
	70 -		18	7,7,10,(11) 0.75	CL	gray, moist, stiff										
4140 - - - -			1	Pushed 0.53	CL (A-7-6(24))	gray, moist, stiff	LEAN CLAY W/SAND LENS	ES	89.7 ES		42	23	0	1	99	C.
1135 – - -	80-		18	6,7,11,(11) 0.56	CL	gray, moist, stiff										
- 130 – - - 	85-		16	10,10,13,(14) 0.62	CL	gray, moist, stiff	SANDY LEAN CLAY W/SAN LAYERS	ND								
		111					SILTY SAND									
1120 -	90	111	18	8,24,23,(27) 0.35	SM,CL	gray, wet, dense	SILTY SAND W/7" LEAN CL LAYER	AY								
	95 -		14	8,9,10,(11) 0.71	SM,CL CL	gray-green, moist, stiff	LEAN CLAY									
- 115	-															
1	10.18		-	RB&G		LEGEND: DISTURBE	D SAMPLE 2,3,2,(6) - Blo	w Count per 60 Value vane (tsf)	6"	_		OTH UC = CT =	ER TE Unco Cons	STS nfined	Com	pr

DRIL	ATION LING	I: <u>N</u> METI D. S	~37 -100	6,29 0: _0 PS0	00, E ~56, ME-55 N	430 0. 2 / N.W	. CASING		DATE S DATE C GROUN	TART OMPI	ED: LETE EVAT		2006 3/16/ 3/20/ : 42	01. 06 06 212.4	4'		
DEPT	PTH TO WATER - INITIAL: $\Sigma \5.0'$ AFTER 24 HOU							OURS: X ARTESIAN'	LOGGE	DBY	G. 1	PEA	SLE	E			
-					Sample)				~	()	At	ter.	Gr	adat	ion	U
Elev. (ft)	Dept (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	N	laterial Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tact
	1	-1/		16	1,1,3,(6) 0.45	CL	brown, moist, firm	organics in top 12"									
1210 -	- 5		X	15	Pushed 0.76	CL (A-7-6(25))	lt. gray, moist, stiff		C 9	95.6	26	43	23	0	1	99	CU
205 -				14	3,4,6,(16) 0.50	CL	red-brown, moist, stiff	SAND LAYERS TO 1" THIC	K								
	10-	1	X	12	Pushed 0.50	CL (A-7-6(29))	red-brown, moist, firm	1		87.6	29.4	47	26	0	1	99	CU
200 -				18	1,2,3,(8) 0.65	CL	brown, moist, stiff	LEAN CLAY W/SILT LENSE TO 0.5" APART	S 0.13"								
195 -	15-	V	X	16 18	Pushed 0.59 2,3,4,(9) 0.52	CH (A-7-6(36)) CH	gray, moist, stiff green-gray, moist, stiff	FAT CLAY W/SAND LAYER 1.5" THICK & 4" TO 12" AP/	RS TO ART		30.8	56	36	0	5	95	
190 -	20-							*******									
	25		X	16	Pushed 0.53	CH (A-7-6(42))	dk. gray, moist, stiff			94.8	28.9	61	36	0	0	100	C
185 -	30 -			11	2,2,2,(4) 0.30	СН	gray, moist, firm	FAT CLAY W/SILT LENSES									
180 -	- 35 -	V	X	14	Pushed 0.40	СН	gray, moist, firm										
175 -	40-			13	3,12,8,(17) 0.61	CH,SM	gray, moist/wet, med. dense	FAT CLAY W/SAND LAYER THICK	RS TO 4"								
170 -	45-		X	14	Pushed 0.69	CH (A-7-6(44))	gray, moist, stiff	FAT CLAY W/SAND LENSE	S	93.8	29.6	68	47	0	13	87	CU
165 -				18	8,8,20,(22)	SM	green-gray, wet, med.	SILTY SAND W/CLAY LAYE 2" THICK & FROM 2" TO 4"	ERS TO APART								
٢	1001]	RB&G		LEGEND: DISTURBE	D SAMPLE 2,3,2,(6) - Blo 0.45 - Tor	w Count per) ₆₀ Value vane (tsf)	6"			OTHE UC = CT = DS =	Unco Cons	STS offined olidati	Com	pres

	ATION: LING M		876 DD:	290 <u>CN</u>), E ~56,4 ME-55 NC	130 D. 2 / N.W	. CASING		DATE S		ED:	D: 3	8/16/	06	4*		
DEPT	TH TO	WATE	R-		TIAL: ₽	~5.0'	AFTER 24 H	OURS: Y ARTESIAN'	LOGGE	ED BY:	G.I	PEA	SLF	E	+		
	Τ				Sample					~	-	Atl	er.	Gr	adati	on	S
Elev. (ft)	Depth (ft)	Lithology	Type	Kec. (III)	See Legend	USCS (AASHTO)	M	aterial Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Test
	-			T				SILTY SAND W/CLAY LAY 2" THICK & FROM 2" TO 4	ERS TO							0,	
1160 -	55 -	II) II)	X 1	7	Pushed 0.69	CL	gray-brown, moist, stiff										
4155 -	60		1	6	7,9,13,(16) 0.40	CL	brown, moist, firm	LEAN CLAY W/SAND LEN TO 8" APART	SES 2"								
4150 -	65		X	4	Pushed	SM	gray, wet	SILTY SAND									
1145 -			1	5 8	,15,23,(25)	SP-SM	gray, wet, dense	SAND W/SILT									
	70 -		1	5	4,3,4,(5) 0.52	CL	gray, moist, stiff	LEAN CLAY W/SILT LENS	ES								
4140 -	75		X	9	Pushed 0.85	CH (A-7-6(35))	gray-brown, moisl, stiff	FAT CLAY		88.1	32.4	54	32	0	2	98	CT UC
4135 -	80-		1	9	5,7,6,(8) 0.72	CL	brown, moist, stiff	LEAN CLAY									
4130 -	85		1	6 8	,31,45,(45)	SM _(A-2-4(0))	gray, wet, very dense	SILTY SAND			18		NP	0	86	14	
4125 -																	
4120 -	90																
	95-																
4115 -																	
Г				R	B&G		LEGEND:	SAMPLE 2,3,2,(6) - (N	ow Count pe	r 6"			OTH UC =	ER TE	STS onfined	Com	pressi

CLIE			DEI	PAF		OF TRAN	SPORTATION		PROJE	CT NU	IMBE	R: 2	006	01.1	39		_
DRI	LING	METH	00.	0,26	8, E~50,4	486 0 2 / N W	CASING		DATE	OMP	ED:	3	120/	06		-	-
DRIL	LER:	D. SI	AMF	so	N	0.2711.11	. ononio		GROUN	ND ELI	EVAT	ION:	42	12.5	5'		-
DEPT	гн то	WAT	ER -	INI	TIAL: ¥	~SURFAG	CE' AFTER 24 H	OURS: ¥ ARTESIAN'	LOGGE	D BY:	G. I	PEA	SLE	Е			
					Sample)				2	(%	Att	er.	Gra	adati	on	U
Elev. (ft)	Depi (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	М	aterial Description		Dry Densi (pcf)	Moisture Content (%	-iquid Limit	last. Index	Sravel (%)	Sand (%)	ilt/Clay (%)	Other Tec
	-	17		18	2,2,5,(11) 0.51	CL	dk. brown, moist, stiff	organics in top 12"			-					S	
1210 -	- 5		X	16	Pushed 0.70	CL (A-6(21))	red-brown, moist, stiff			104.3	26.2	40	19	0	0	100	U
4205 -				14	3,4,5,(14) 0.32	CL	lt. brown, moist, firm	LEAN CLAY W/SAND LEN TO 12" APART	SES UP								
	10		X	14 18	Pushed 0.72 2,2,4,(9) 0.60	CL (A-7-6(25)) CL	red-brown, moist, stiff brown, moist, stiff			98.4	28	45	23	0	2	98	UC
4200 -	15	1	X	17	Pushed 0.78	CH (A-7-6(32))	gray, moist, stiff			97.7	27.5	55	33	0	11	89	U
4195 -	20			17	2,1,2,(4) 0.28	СН	gray, moist, soft	FAT CLAY W/SAND LENSI LAYERS TO 1" THICK & 3" APART	ES & TO 12"								
4190 -		1	X	14	Pushed	СН	gray, moist, stiff										
4185 -	25	1			0.50				11 12 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18								
	30	V		5.5	2,2,2,(4) 0.25	СН	gray, moist, soft										
4180 -	35		X	19	Pushed 0.47	CH (A-7-6(36))	dk. gray, moist, firm	FAT CLAY		76	45.1	54	33	0	2	98	C
4175 -	40			16	6,8,6,(13)	SP-SM	gray, wet, med. dense	SAND W/SILT									
4170 -	45		X	14	Pushed 0.80	CL	gray, moist, stiff	SANDY LEAN CLAY W/SA LAYERS TO 3" THICK & U APART	ND P TO 10"								
4165 -	-			18	6,5,10,(12) 0.75	CL	gray, moist, stiff										
[Test	3		F	RB&G		LEGEND: DISTURBE	D SAMPLE 2,3,2,(6) - BK	ow Count per 1)60 Value rvane (tsf)	r 6"			UC = CT = DS =	Unco Conse Direct	STS nfined olidati	Com	pres

LOCA	NT: <u>L</u> ATION	ITAH	- 37	6,2	RTMENT (68, E ~56,4	OF TRAN 486			DATE S	TART	JMBE ED:	R: 1	2006 3/20/	01. 06	139		
DRILI	LING	DS	SAM	PS(ON	J. Z / N.W	CASING		GROUN		EVAT		· A2	12	5'		
DEPT	н то	WAT	TER	- 11		~SURFA	CE' AFTER 24 H	OURS: ARTESIAN'	LOGGE	DBY	G.	PFA	SLE	F	0		-
	1	T	T		Sample							At	ter.	Gr	adat	ion	
Elev. (ft)	Depti (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Μ	laterial Description		Dry Densit (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	Other Tech
- 4160 –				18	Pushed	CL	ann mitheastartar										
4155 -	55 -			10	0.66	(A-7-6(21))	gray, moist, sun	LEAN CLAY		95.2	26.8	41	20	0	3	97	U
4150 -	60 -			16	7,13,17,(22) 0.80	CL	brown, moist, stiff										
-			V	8	Pushod	SP.SM	aray wot										
	65 -			16	9,10,11,(15)	SP-SM (A-1-b(0))	gray, wet, med. dense	SAND W/SILT			23		NP	0	92	8	
4145 -			A	15	0.47	CL	gray, moist, firm	LEAN CLAY									
1	70-	-		14	Pushed 6,7,9,(11)	SM SM	gray, wet, loose	SANDY SILT	_								
4140 -		V	1		0.42	CL	gray, moist, firm										
	75 -			16	7,8,12,(13) 0.70	CL	brown, moist, stiff										
4135 -		1	1					LEAN CLAY									
	80 -		X	14	Pushed 0.40	CL (A-7-6(21))	gray, moist, firm			90.6	27.7	41	19	0	1	99	CU
4130	85 -			13	10,10,10,(12) 0.42	CL	gray, moist, firm	LEAN CLAY W/SILTY SAN LAYERS TO 1.5" THICK & TO 4" APART	ID FROM 2"								
4125 -								LEAN CLAY									
	1	ť		16	10,13,13,(16)	CL SM	brown, moist gray, wet, med. dense	SILTY SAND									
	90-	V	1			CL	gray, moist	LEAN CLAY									
4120	95 -	1/1	X	10	Pushed 0.35	SP-SM CL	gray, wet gray, moist, firm	SAND W/SILT									
4115 -				3	39,39,39,(45) 0.75	CL	gray, moist, stiff	LEAN CLAY W/SILTY SAN LAYERS TO 3" THICK	D								
Г	TOF	8			RB&G		LEGEND: DISTURBE	D SAMPLE 2,3,2,(6) - (N 0,45 - To	ow Count per I ₁) ₆₀ Value prvane (tsf)	6"			OTH UC = CT =	ER TE Unco Cons	STS onfined olidati	d Com on	pres

LP OVER MULTI-USE TRAIL & D&RGW RR

E-2573

PROJ	NT: U	LEG	DE	EPA	RTMENT	- STR. E-	2573 (L.P. OVER M SPORTATION	-USE TRAIL & D&RGW RR)	PROJE	CT NU	JMBE	R: 2	2006	SHE	EET	10	F 2
LOCA	TION:	N 3	382	,59	4, E 62,86	2			DATE S	TART	ED:	2	2/24	/06			
DRIL	LING	NETH	100): (CME-55 N	0.2/N.W	. CASING W/TRIC	CONE BIT	DATE	COMP	LETE	D: 2	2/27	/06			
DRIL	LER:	D. S.	AM	PS	ON				GROUM	ND EL	EVAT	ION	: 42	220.9	9'		
DEPT	HTO	WAT	ER	- 11	NITIAL: ₽	N.M.	AFTER 24 H	OURS: ¥ 5.6'	LOGGE	DBY	<u>G.</u>	PEA	SLE	E			
		N	-		Sample)				ity	(%)	At	ter.	Gr	adati	ion	sts
Elev. (ft)	Depth (ft)	Litholog	Type	Rec. (in)	See Legend	USCS (AASHTO)	N	laterial Description		Dry Dens (pcf)	Moistur Content (Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	silt/Clay (%	Other Tes
4220 -		2000	NA ^v OI	11	4,14,11,(39)	GP SP GM	black, moist, loose It. gray, moist, loose black, moist, loose	GRAVEL SAND SILTY GRAVEL		ĥ		-					
- 4215 — - -	5			15	4,3,4,(11) 0.43	CL	brown to gray, moist, firm	LEAN CLAY									pH Resis Sulfat
- 4210 — -	10		X	13	Pushed 0.62	CL (A-6(19))	gray-red, moist, stiff		*(111)111.020	105.8	24.2	38	20	0	7	93	UC
4205 -	15-			18	4,5,5,(12) 0.85	CL	brown, moist, stiff										
- 4200 — -	20-		XXXXX	13	Pushed 0.63	CL (A-7-6(25))	green-gray, moist, stiff	LEAN CLAY W/SAND LEN	SES	86.8	33	43	24	0	3	97	СТ
- 4195 — -	25-			20	0/10",1,1,(2) 0.36	CL	gray, moist, firm										
- 4190 — -	30-			14	Pushed 0.30	CL SM	dk. gray, moist, firm dk. gray, wet	LEAN CLAY									
- 4185 —	35			18	2,3,4,(6) 0.52	CL	gray, moist, stiff	LEAN CLAY W/SILTY SAN LAYERS TO 3" THICK	D								
- - 4180 — - -	40		X	16 20	Pushed 0.55 3,3,4,(6) 0.40	CL (A-7-6(23)) CL	gray, moist, stiff gray, moist, firm	LEAN CLAY W/SILTY SAN LENSES	D	101.9	23.6	45	23	0	7	93	UC
- 4175 —	45-			19	3,3,4,(5) 0.40	CL	gray, moist, firm										
-	-	1						FAT CLAY									
	RB G]	EN	IG	RB&G INEER INC.	ING	LEGEND: DISTURBE UNDISTURBE	D SAMPLE 2.3.2.(6) - (N 0.45 - To	w Count per 1)60 Value rvane (tsf)	r 6"			OTH UC = CT = DS = TS = CBR	ER TE Unco Cons Direc Triaxi = Cali = Pot	STS onfinect olidati t Shea al Shea ifornia ential ential	l Com on ar ear Bearin Liquef Liquef	pression ng Ration faction

DRI	LL I		LE		OG	STP E.	2573 (I. P. OVEP.M.		BOF	RINO	G N	0.	RS	B	X	8-6	28
CLIEN	NT: U	TAH	DE	PA	RTMENT	OF TRAN	SPORTATION	OUL TIME & DORGWRR)	PROJE	CT NU	IMBE	R: 2	2006	01.	143	2 0	r Z
LOCA	TION:	N 3	82,	594	4, E 62,862	2			DATE S	TART	ED:	2	2/24/	/06		_	
DRILL	ING N	IETH	OD	: _(CME-55 NO	D. 2 / N.W	. CASING W/TRIC	ONE BIT	DATE C	OMP	ETE	D: 2	2/27/	/06		_	_
DRILL	ER:	D. SA	AMI	PS	ON				GROUN	ID EL	EVAT	ION	: 42	20.9	9'		
DEPT	НТО	WATE	ER	- 11	IITIAL: ¥ _	N.M.	AFTER 24 HO	DURS: ¥ <u>5.6'</u>	LOGGE	DBY	<u>G</u> .	PEA	SLE	E		_	_
		gy	H	-	Sample					sity	re (%)	At	ter.	Gr	adat	on (%	ests
Elev. (ft)	Depth (ft)	Litholo	Type	Rec. (in)	See Legend	USCS (AASHTO)	M	aterial Description		Dry Der (pcf)	Moistu Content	Liquid Lim	Plast. Inde	Gravel (%	Sand (%)	Silt/Clay (%	Other Te
4170 -			X	20	Pushed 0.26	CH (A-7-6(36))	gray, moist, firm	FAT CLAY		113.1	29	55	32	0	1	99	СТ
- 4165 — -	55			20	4,5,7,(9) <i>0.65</i>	СН	gray, wet, stiff	FAT CLAY W/SILTY SAND L	ENSES								
- - 4160	60-		X	12	Pushed 10,11,26,(25)	SM	gray, wet, _artesian_at 61'	SILTY SAND									
-	4	11		4	0.75	UL	gray, moist, sum	LEAN CLAY W/SAND									
-	65-			10	8.7.14.(14)	SM	gray, wet, med. dense	SILTY SAND									
4155 -				15	0.50,0.30	CL	gray, moist, firm										
-	-							SANDY LEAN CLAY									
4150 -	70-	11	X	19	Pushed	CL (A-7-6(15))	gray, moist, firm			89	33	44	24	0	31	69	CT
	-	4			0.00	SC (A-7-6(7))		CLAYEY SAND			21.9	43	25	0	53	47	
4145 -	75 -			20	5,7,8,(9) 0.62	CL	gray, moist, stiff	LEAN CLAY									
- 4140 — -	80-		X	14 20	Pushed 0.28 5,3,5,(5) 0.20	CL (A-6(14)) CL	dk. gray, very moist, firm dk. gray, very moist, soft				28.9	33	15	0	4	96	
- 4135 —	85 -																
-	-																
4130 -	90-																
-																	
- - 4125 —	95 -																
-																	
	RB G	8	EN	G	RB&G INEER INC. PROVO, IITAH	ING	LEGEND: DISTURBED	D SAMPLE $2,3,2,6) \leftarrow Blow (N,1) \\ 0.45 \leftarrow Torn$	v Count per 60 Value /ane (tsf)	6"			OTH UC = CT = DS = TS = CBR	ER TE Uncc Cons Direc Triaxi = Cal = Pot	STS onfined olidati t Shea ial Shea ifornia tential tential	I Com on ar Beari Liquei Liquei	pressic ng Rat faction faction

LOCA DRILI DRILI	ATION: LING N	N 3		,234): _(4, E 62,804 CME-55 N ON	4 0. 2 / N.W	/. CASING W/TRIC	ONE BIT D/	ATE STA ATE CO ROUND		ED: LETEI	2 D: 2 ION	2/27/	06	6'		
DEPT	HTO	WAT	ER	- IN	IITIAL: ₽	6.0'	OURS: ¥ 6.7' LC	DGGED	BY:	C. 5	SAN	BOI	RN				
			L		Sample	9				Ś	(0)	At	ter.	Gra	adat	ion	
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	See Legend	USCS (AASHTO)	Ma	aterial Description		Ury Uensi (pcf)	Moisture Content (%	Liquid Limit	Plast. Index	Gravel (%)	Sand (%)	Silt/Clay (%)	
- 220		000000		11	5,7,10,(26)	GP-GM (A-1-a)	dk. gray to tan, slightly moist, med. dense black-brown, moist,	GRAVEL W/SAND & SILT			2.3		NP	66	29	5	
215 -	- ¥ -			14	4,5,8,(20) 0.55	CL	loose dk. brown, slightly moist, stiff										
210 -	10-		X	11	Pushed 0.89	CL (A-7-6(27))	It. gray & It. brown, moist, stiff		ç	97.8	25	47	27	0	7	93	1
- - 205 —	15-		X	12	Pushed 0.73	CL (A-6(18))	lt. gray & lt. brown, moist, stiff	LEAN CLAY W/SAND LENSES TO 3" APART	1"	02.7	25	37	17	0	2	98	1
200 -	20-			19	2,2,3,(5) 0.40	CL	It. gray w/some brown, moist, firm										
- - 195 –	25-		X	16	Pushed 0.38	CL (A-6(19))	lt. gray w/some brown, moist, firm			91.6	33.2	39	17	0	3	97	G
- 190 — -	30			17	3,6,12,(18) 0.17	CL,SM	clay - It. gray, moist, soft sand - gray, wet, med. dense	INTERBEDDED LAYERS OF LE CLAY & SILTY SAND 1.5" TO 6 THICK	EAN								
185 -	35	17		15	2,1,2,(3) 0.35	SM CL	It. gray, wet, loose It. gray, very moist, firm	SILTY SAND									
180 -	40		X	12	Pushed 0.72	CL (A-7-6(31))	lt. gray, very moist, stiff	LEAN CLAY	8	35.1	31.5	49	28	0	1	99	1.274
- - 175 —	45 -			18	3,4,5,(7) 0.45	CL	lt. gray, moisl, firm										
	-					1		SILTY SAND									

CLIE!		N 38	DEI 32.3	234	RTMENT (DF TRAN	SPORTATION		PROJE	CT NU	IMBE	R: 2	2006	01.1	43	-	-
DRIL	LING	AETHO	DD:	. (CME-55 NC). 2 / N.W	. CASING W/TRIC	ONE BIT	DATE C	OMP	LETE	D: 2	2/28/	06			
DRIL	LER:	D. SA	MF	SC	NC				GROUN	ID EL	EVAT	ION	: 42	21.0	5'		
DEPT	TH TO	WATE	R-	IN	ITIAL: ¥	6.0'	AFTER 24 HC	OURS: ¥ 6.7'	LOGGE	DBY	<u>C.</u>	SAN	BOI	RN	_	_	
Elev. (ft)	Depth (ft)	Lithology	Type	Rec. (in)	Sample See Legend	USCS (AASHTO)	Ma	aterial Description		Dry Density (pcf)	Moisture Content (%)	iquid Limit P	last. Index	Gravel (%)	Sand (%)	it/Clay (%)	Other Tests
1170 -			X	19	Pushed 0.77	SM CL	gray, moist It. gray, moist, stiff	LEAN CLAY					0	0		S	
4165 -	55			19	2,3,8,(8) 0.25	CL,SM	clay - It. gray, moist, firm sand - gray, wet, loose	INTERBEDDED LAYERS OF CLAY & SILTY SAND 0.25" THICK	ELEAN TO 4"								
1160 -	60 -		X	0 8	Pushed 6,10,13,(16)	SM	gray, wet, med. dense	SILTY SAND									
4155 -	65			20	19,28,35,(42)	SM (A-1-b)	gray, wel, dense			-	14.5		NP	4	78	18	
4150 -	70-			20	12,20,13,(22) 0.45	SM	gray, wet, dense artesian at 70'	SILTY SAND W/CLAY LENS LAYERS TO 2" THICK	ES &								
4145 -	75-		X	14	Pushed 0.40	CL (A-7-6(28))	gray, moist, firm			87.6	34.9	48	28	0	1	99	CT UC
4140 -	80-			19	4,6,5,(7) 0.38	CL	gray, very moist, firm	LEAN CLAY W/SILTY SAND LAYERS 0.25" THICK & 0.5" APART) TO 1.5"								
4135 -	85-			20	12,28,40,(40) <u>0.61</u>	SP-SM CL-ML SM	gray, wet, dense gray, moist, stiff gray, wet, dense	SAND W/SILT									
4130 -	90																
4125 -	95-																
	-						LEGEND:	E Blow	v Count per	6"			ОТН	ERTE	STS		
	RB	F	N	C	RB&G	INC	DISTURBED	0 SAMPLE 2,3,2,(6) ← (N,) 0.45 ← Ton	60 Value Vane (tsf)				CT = DS =	Cons	olidati t She	on ar	press

*

	Boring: SB-13-308								·					T	est F	lesui	s*		Legacy Parkway - Preferred Alternative
5		-	_	٦ آ			3				● SPT (N ₂).		Ϋ́,	é.	l III	D.	8.0	sts	I-215 to I-15/US 89 Interchange
BE.	(ASTM D 2488/D 2487)			Ξſ	•	3-	Class	Soil	N. Blow	nt per 0.15 /	Greater than 50 Blows)	1		۲ اور		물을	1 S .	L L	KLEINFELDER
l 🛱		π	m	5	Ţ	1 <u>6</u>	uses	AASHTO	(or inte	irval shown) . 	S N	2	Ŷ	르	2 -	d ž	ŧ	Project No. 35-8163-05
1285	FILL SINA SAND - medium dense, moist, vellowish-brown			∞d	SPT	610			5	5 5 6		┦──	-	\vdash					
		-		8		ĺ													FIELD TEST BORING LOG
┣-			1 1-1	₩.	1	}	1	1	1		· · · · · · · · · · · · · ·					1]		Boring: SB-13-308
Į –		5~	_	⋙	P	584	1		ł			-	15.6	26	ĺ	}		pH WSS	Sheet 1 of 4
	Electic SILT - stiff, wet, gray to reddish-yellow	=		ЖŤ	1	ļ –	MH	A-7-5	{		111111111111				ļ			R	
		10-	3 -	//	-	840	ĺ					-			ļ	Į	[SG	Logged by: J. Rajek
Γ		_			- SF1					5 - 5	["]	1			[1		Date Start 1/9/00 Date Finish: 1/12/00
F .) =	4-			1	1	1			<u>}</u>	1			1				Station: 6013+313.168 14.02 RT
		15-			P	559	[1								} '		Coordinates (m): N 116,561.569 E 19,169.000
			٦°		1		{	ļ	{			}			Į		<u>ا</u>		Elevation (m): 1285.134
		20-	6 -	IA.			ļ		{		$\begin{bmatrix} 1 \\ - \end{bmatrix} + 1 - \begin{bmatrix} 1 \\ - \end{bmatrix} + $	-{			[[{		Drill Contractor: Haztech Drilling
Γ	- very soft	- [~]			SPT	610	ļ			0 1 2					ł			:	Driller, C. Peterson
		=	7-7	$\langle \rangle$]	ł	}		1										Drilling Method: Mud Rotary
}		25		h	Р	0	ł				111111111				[ĺ			Hammer Type: Automatic Rod Type: NW
F I		=	8-		Р	610	1					9	12.8	42	56	24	97		Boring Diameter: 121 mm
1						ļ	ļ		(-{					ļ		
F		30			SPT	610	ĺ		0	0 0 0	•oi			[[[ļi		Elevations based upon North American Vertical Datum of
1275		=	10	//		1				-	┝┥╍┝┥╍┝┥╍┝┥	· _			1	1			1988 (NAVD '88)
	with sourd lowers	35 -			P	508	}	1			111111111)]		Coordinates are NAD '83
F :	- With Sand Kinkes	=	11 -				Ì							1	1		1		= Observed Groundwater depth at time of dhiling
1 .		[]	12		ļ	{	1		1			_}			{	1	{ ·		sampler 150 mm or interval shown
F.	-	(40			SPT	610	[{	0	0 0 2	foi				[{			USCS = Unified Soil Classification System
		1 -	13 -		1											l			AASHTO = American Association of State Highway and Transportation Officials
)		45 -				6.04	Ì]]	[= See Key to Soil Logs for list of abbreviations
<u>-</u>			14			004			i –		111111111111				ļ	Ì.	1		and descriptions of tests
			15			l	}		{		L					ł			SAMPLE TYPE
1270	Silty SAND - medium dense, wet, blackish-gray	50		\mathcal{X}	SPT	610	SM	A-2-4	4	4 19 14	• • 1			1 1	ł		{ :		SPT = Standard Penetration Test, 34.9mm ID and
L		-	16		1		ĺ				┟┧╍┝┥╍┝┥╍┝┥	-			ł		[;		50.8mm OD split spoon sampler
[55														ł	1		MC = Modified California Sampler, 50.8mm ID and 63.5mm OD split spoon sampler
-			17 -			1)		1			1			1	1			P P = Piston Sampler, 76.2 mm OD
		=		1A			ļ	ł	ſ			-			ĺ		Ì		
F .	Sanchy Lean CLAY - stiff wet gray, fine-grained sands	60—	10-1	₹4	P	610	CL	A-6	{		{ { } } } }		16.2	23	ļ		{	с	SH = Shelby Tube, 76.2mm OD, pushed
	and and and a set and and and a set and a set and		19 -	=Ŧ	ł		1	1	l		4	·			l	1		SG	B BAG = Bulk Sample
Γ 1				3		1													
		65	1 1		t	t	ι	1	1		(·				1	1		ل مصادر المحمد ا

	Borino: SB-13-308												Test I	Resul	ts *		Legacy Parkway - Preferred Alternative
E .	Sheet 2 of 4			2			S	SAMPLE	•	e SPT (N.)	÷ ÷		ŧ	2	2	ste	I-215 to I-15/US 89 Interchange
E E	(ASTM D 2488/D 2487)	De	pth	불		2	-	Soil	N Plane and 15	O SPT (N.)	A 4 6		Ē	Hole A	202	r Te	KLEINFELDER
		n	m	Ē	Type	SE	Class	striction	(or interval shows)	500	MON	클	큰 ⁴	2	the	Brokest No. 35-8163-05
		l			· 	2	USCS	AASHTO			취직		┿┛		<u> </u>		
- 1265	Sandy Lean CLAY - stiff, wet, gray, fine-grained sands (continued)	-	}				l	1	l						{		FIELD TEST BORING LOG
		=	21	N			-	-		┟┨╍┝┥╍┝┥╸		1	1		1		Paring: SR 42 209
r	Lean CLAY - medium stiff, wet, gray	70	1		SPT	610		~	0 3 3 5	[P4							Bornig. 3D-13-300
L			22 -		1			Į		▶2 - 2 - 4 - 2 - 2 - 2 - 2 - 1					1		Sheet 2 of 4
		7= -	ł		ł					<u>}</u>							Learned has I Baiak
\vdash	Silty SAND - wet, gray] "=	23 -				SM	A-2-4]								Date Start 1/9/00
1		=		$\langle \rangle$	ł	1	l	[Į								Date Finish: 1/12/00
F		80-	24 -	V/A	1			1				1					Line: D MAINLINE
1		1 =	25 —	VA.						┝┥╌┝┥╌┝┥╌┝┤╴							Coordinates (m): N 116,561.569 E 19,169.000
-1260				1A		584		ļ					1				Total Depth Drilled (m): 61.6
		85 —	26		1		}		1	┟┤-┟┥-┟┥-┞┥-			1		1)	Dritt Contractor. Haztach Dritting
Γ		-												1			Drifer: C. Peterson Rig Type: CME-75
F			27 —		ł			{			} {		1	}	1	1	Drilling Method: Mud Rotary
	- međium dense	90		KA	SPT	610			5 9 11 19	· │ │ │ ∲ 1 <mark>ड</mark> │ │ │ │ │							Hammer Type: Automatic Rod Type: NW
\vdash	Lean CLAY - very stiff, wet, gray] _	28 -	\square			CL	A-6						i			Boring Diameter: 121 mm
		95 -	29 -			ļ		{		L			1		}	l	
1				H	1]]				ŀ			Í		LEGEND/INCIES
		-	30—	Ħ	1			1		┠┥╍┝┥╍┝┥╍┝┥							1988 (NAVD '88)
L 1255	_ with energy	100	i i	\square	ĴР	610	{	}	1			ł	1		1		Coordinates are NAD '83
L	-widt saiki		31 —		1			ł		┝┧ー┝┥ー┝┥╴					1		Served Groundwater depth at time of drilling
		=			1												Blows = Number of blows required to drive split spoon
+		105	32 -			Į	Į	{	{			ł	1		ł	1	USCS = Unified Soil Classification System
		_							ļ			ļ			1		AASHTO = American Association of State Highway and
F			33 -					İ				1					Transportation Officials
	Silty SAND - medium dense, wet, gray, fine to coarse-grained		34		SPT	610	SM	A-2-4	7 7 8 15	●11 	}	1	1	1		1	 = See Key to Soll Logs for list of aboreviations and descriptions of tests
F				\mathbb{Z}				1				}			1		
-1250		115 _	35 —	1					1	┝┧╍┝┥╌┝┥╌┝┥╴			1			-	SAMPLE TYPE
[¹²³⁰		1 1		VA.	ł		{		ł			ł	1			{	SPT = Standard Penetration Test, 34.9mm ID and
		-	36	\mathcal{A}					1								MC = Modified California Sampler 50 8mm ID and
	Sandy Lean CLAY - wet, gray	120		Ľ⊈	P	610	CL	A-6	1				1			1	63.5mm OD split spoon sampler
i F			37 —	57	4			}	1			}	}	1		1	P = Piston Sampler, 76.2 mm OD
			30	5			ĺ										
F		125	- 00	1				1									SH = Shelby Tube, 76.2mm OD, pushed
			39 -	크	[ł		l	+		ł			}		B BAG = Bulk Sample
Γ		130-		티]							1	
		130-			SPT							1	1	1			

	Boring; SB-13-308		-											Test l	Result	s *		Legacy Parkway - Preferred Alternative
s				13			3	AWFLE			e SPT (N.).	ity.	- 2	mt.	¥.	20	eta	I-215 to I-15/US 89 Interchange
ĒÊ	(ASTM D 2488/D 2487)		7 1	- ă l		5	Class	Soil	N. Blows	. per 0.15 л	O SPT (N ₁)m (Greater than 50 Blows)	A SIC	튄	2 2	la ster	1888 V	L L	KLEINFELDER
i i i i i i i i i i i i i i i i i i i		ft	m	5	Ť		11505	AASHTD	(or inter	val shown)		0 5 C	Ň	클	문	Å Ž	ette	Project No. 35-8163-05
1745			<u> </u>		J	610			6 9	6 8							<u> </u>	
1243	- Sandy Ligan CLAT - San, wet, giby (contineed)	-]					• -	1				1			FIELD TEST BORING LOG
L		135 —	41 -	臣					1		┟╢╾┝┥╾┝┥╾┝╶┤╌┝┤╴		Į		Į	Į	Į	Boring: SB-13-308
) =	1]							1		Shoot 2 of 4
-		=	42 -	딤	[<u> </u>	Į						ļ	ļ		Sheet 3 01 4
	Sitty SAND - wet, grzy	140	17	VA.	P	610	SM	A-2-4					1		1		sv	Logged by J. Raiek
F		-		VA	{										}		ļ	Date Start 1/9/00
			44 -	Ø							┝╺╍┍╺╌┍┥╍┍╺╸╸		1					Date Finish: 1/12/00 Station: 6013+313.168 14.02 RT
Γ		145	1	12	1		I								1		}	Line: D MAJNLINE
1240		=	45 -	1							╞╶┥╌┠╺┫ ╍┝╶┪╌┝╸┪ ╌┝╴┦╸							Coordinates (m): N 116,561.569 E 19,169.000
		150	1	M														Total Depth Drilled (m): 61.5
F	- medium dense	_	46 -	1A	SPT	610			12 22	22 50	┝┥╍┝┥╾┝╶┍╌╇╕┥╾┝┥╴ ╎		ļ		1			Drill Contractor: Haztech Drilling
1		-]	VA								1			ļ			Rig Type: CME-75
F		155 —	4/-	VA	SPT	610			12 12	15 18	11 •15 111				{			Drilling Method: Mud Rotary
		1 -	 48 -										1				l	Rod Type: NW
F			1 -	VA	1										ł			Boring Diameter: 121 mm
L		160	49 -	Ø							+ 1- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							LEGEND/NOTES
Γ			1	\square	ł										ł.	1	}	Elevations based upon North American Vertical Datum of
- 1235		165	50			Í					┝┤╍┝┥╌┝┨╍┝┥╌							1968 (NAVD '88)
1	Lean CLAY - stiff, wet, gray		}	Ħ	P	610	CL	A-6				12		'	Ì	93		Coordinates are NAD '83
\vdash	Silty SAND - medium dense, wet, gray, fine-grained		51 -	₩	SPT	610	SM_	A-2-4	8 12	14 19						{	Į	= Observed Groundwater depth at time of draining
}	Least CLAT - Suit, wet, gies	170	57 -]		⁻ .								[Ì.		sampler 150 mm or interval shown
F					ł													USCS = Unified Soil Classification System
[53 -	Ħ	1											1		AASHTO = American Association of State Highway and
Γ		175	ł	E	SPT	610			78	14 21	<u>┊</u> ╎╘ _{┦┥} ┊╎╷╷╷╷							* = See Key to Soil Loos for list of abbreviations
L			54 -		1						┝┧╌┍┧╌┍┥╌┍┐╌		ĺ				1	and descriptions of tests
1			}	\square					1			1			ł]	
- 1230		- 100	55 -	Ħ	1				(<u>-</u>				Į		ĺ	STAT - Standard Basebation Test 34 9mm ID and
1				Ħ	1	1		1			<u>│</u>			Í	i i			50.8mm OD split spoon sampler
F		185 -	1	E	SPT	810			17 10	27 39	111 92 1111		ļ		ļ	Į i	(MC = Modified California Sampler, 50.8mm ID and
	Silty SAND - medium dense, wet, gray		57 -	\boxtimes			SM	A-2-4			┟┚╍╏┙╘┨╼╘┚╼╘┚							63.5mm OD split spoon sampler
Γ				VA.	ł									}			{	P = Piston Sampler, 76.2 mm OD
L		190-	58 -	¥/A	SPT	610			12 17	17 22	┟╌╌╼╍				1		}	SH = Shelby Tube, 76.2mm OD, pushed
			ł		1										1	{ i	1	
F			59 -	Ø.	1						t 1-r 1-r 1-r 1-r 1-r 1-				1			B BAG = Bulk Sample
	Lean CLAY - very stiff, wet, gray	195	1	Ľ ≤	SPT	610	CL	A-6	22 34	30 34	● 30		1		1			

	Boring: SB-13-308			ГТ									Test	Resul	ts '		Legacy Parkway - Preferred Alternative
E	Sheet 4 of 4			2			5	SAMPLE		● SFT (N_)	- ²		Ĩ	1	12	ats ats	I-215 to I-15/US 89 Interchange
불순	SAMPLE DESCRIPTION	De	pth	물		2	<u> </u>	Soli	1	O SPT (N.)	4	E E	<u>تْ</u> ا	클		ê,	
1 <u>2</u> -	(AS (H D 2400 D 240))		-		ğ	1 SE	Clas	sification	IN, Blows per 0.15 m i (or interval shown)	(Grammer train on provide)	0.00	뒥쿻	길		4 2	, re	
1		1 "	m	"	÷.	2	ບຣດຣ	AASHTO		8 8 0	1		Ē	1	×	õ	Project No. 35-8163-05
1225	Lean CLAY - very stiff, wet, gray (continued)			H	T			1						Т			
1			-						1							ļ	FIELD TEST BORING LOG
F		200-	61		SPT	610			21 22 28 38								Boring: SB-13-308
[1 -						<u>+</u>	1			}					Sheet A of A
F			62 -			1		1	l							ł	
1		205 -	~			ł.											Looped by: L Ralek
-			03	1					-							ļ	Date Start: 1/9/00
		-															Date Finish: 1/12/00
F		210	04 -							<u> </u>							Station: 5013+313,168 14.02 Ki
			65 .			1				┟╻ _╼ ┎╻╴┟┥╌┝┥╴							Coordinates (m): N 116,561.569 E 19,169.000
1220		245	- 05									1	1				Elevation (m): 1285.134
1		215	66 -		1	1	}	1		┟┧ _╍ ┝┥ _╍ ┝┥╌┝┥╴							Drill Contractor: Haztech Drilling
-					1				1								Driller: C. Peterson
1			67 -		1			1	ł	┟╢╻╽╢╻╽╢╻╽							Rig Type: CME-75
F		220				1		1						1			Hammer Type: Automatic
1			<u> 68</u>				1	1									Rod Type: NW
F					1				1								Boring Diameter: 121 mm
1		~ ~	69 -		ļ	ļ	t I	1		┟ _{┓╾┍┩╌} ┍┥╌┍┑╌┍ _┚ ╌				1			
						1		1									Elevations based upon North American Vertical Datum of
1		230-	70—							┝┥╍┝┥╍┝┦╍┢┥╍┝┫╸							1988 (NAVD '88)
F ¹²¹⁵								1									Coordinates are NAD '83
L			71 -		i i					┟┥╍┝┥╍							Served Groundwater depth at time of drilling
Γ		235			Į	1	1	1	Į						ļ		Blows = Number of blows required to drive split spoon
L		_	72 -		-			1		╞╝╼╚╝╼╚┫╌╚╝╼╚╝╸							sampler 150 mm or interval shown
)		1 1	1	1	1	Ì						}	1		USCS = Unified Soil Classification System
L		240	73 -			1	1			<u> </u>				1			Transportation Officials
																	 See Key to Soil Logs for list of abbreviations
\vdash		=	74 —							<u> </u>			1		1	1	and descriptions of tests
1		245 -											1			1	SAMPLE TYPE
- 1210			75 —							<u> </u>					1		
						{	ł								1		SPI = Standard Penetration 1est, 34, smith ID and 50.8mm OD solit spoon sampler
<u>-</u>		250-	76 —						1				1		1		MC = Modified California Sampler, 50.8mm ID and
ł			i													1	63.5mm OD split spoon sampler
F		-	- 17		1		1		1							1	P P Iston Sampler, 76.2 mm OD
		255 -					I	1	1							1	
F		1	78 -			1									1		SH = Shelby Tube, 76.2mm OD, pushed
[70		[ļ			Į.							ļ	
۰ ۲		260-	/9										1				
1					1	1		1		fi i i li i i i						1	

	Boring: SB-14-313				-		_		-					L	_	Tes	it Re	sults	•		Legacy Parkway - Preferred Alternative
18	Sheet 1 of 4	1		1 Å			5	AMPL	•	_		● SPT (N ₄) _m		allen heilen			Ē	è.	20	sta	- I-215 to I-15/US 89 Interchange
ĒĒ	(ASTM D 2488/D 2487)			불	•	è.	Class	Soil	N. BI	lows per l	0.15 m	(Greater th	ın 50 Blows)	5	튌	>		돌	18	1	KLEINFELDER
1		n	m	5	ţ	1 SE	USCS	AASHTO	(or)	nterval si	hown)		, a			Ê	뢰	2 -	ž	-tio	Project No. 35-8163-05
	SILT, stiff moist clark brown, with organics and fine-grained sand			1	SPT	508	ML	-	1-	4 3	5	<u>⇔</u>	<u> </u>	┞─╀	-+-	-+	-+	-			
- 1285	Lean CLAY - moist, light gray	1 3		44	Y		ČL.	A-6	1					11	[FIELD TEST BORING LOG
L		_=	1 1 -	Ħ			1	}													Boring: SB-14-313
L.	- wet, will agin brown mounty, save en	5	2-	F	SH	610	1	}	1				1111			26		Ì		pH WSS	Sheet 1 of 4
4]		E	1	ļ	}	{				1111								R	
	sector with some from the	10	3 -	F	SPT	610			4	33	4		-11-11-	} {							Logged by: S. Lewis Date Start: 1/17/00
+	* Instituti Stut, Will Saint Scaries	=	1		Y		l					1111	1111								Date Finish: 1/20/00
L		=	4-	Ħ	1							[1 - [1 - []	-11-11-			1					Station: 6013+394.540 17.55 LT Line: D MAINLINE
}	- light gray	15 -	5-	E	SH	508						┝╶┨╼┝╶┨╼┝╺				Į					Coordinates (m): N 116,647,190 E 19,184,405
- 1280		=		E	1	ł	1	ł	1						1						Total Depth Drilled (m): 75.3
{		20	6-	Ħ	SPT	610	L			2 1	2	┝┥╌┝┥╌┝╶ ╽ ┛ ╕			Ì	j					Drill Contractor: Layne Christensen
F	SILT - soft, wet, dark gray, with organics and trace of clay]]		\swarrow			ML	A4] .] {						l	Rig Type: Mobile B-59
L	Classic Cli T. and wat attai with amonics trace of sill accessional	1 -	/-		ļ	ļ	MH	A-7-5	4			1111	1111	{ {	1					!	Drilling Method: Mud Rotary Hammer Type: Rope and Cathead
	sand layers	25 -	8-		SH	610	[1	1			 		33 1	10.4	61	69	33	100	l	Rod Type: AW
┝		=	1		1			1	ĺ								1	ļ			Borng Lameter 133 mm
1		30-	9-		SPT		})	5	96	3	╞┤╴┝┨╌┢╴	-11-11-	1				1			LEGEND/NOTES
Γ	SILT - stiff, wet, dark olive-gray, with a trace of sand		10_	19			ML.	A-4	1			╽							,		Elevations based upon North American Vertical Datum of 1988 (NAVD '88)
- 1275			10	M	ł		1	{	1					1			1				Coordinates are NAD '83
		³⁰	11 -	K	SH	610	L		1			┟┧╍┡┨╌┡┥		{ }					i		Sector
+	Silty SAND - wet, gray, with organic, fine-grained to medium-grained	7		Ø	1		SM	A-2-5]	$\{ \} \} \}$			-			i		Blows = Number of blows required to drive split spoon
L	Lean CLAY - soft, wet, gray, sand seam	40	12 -	E	SPT	610	CL	A-6	1,	2 1	2	•6					4		ļ		USCS = Unified Soil Classification System
			13 -	H			[ł			i		AASHTO = American Association of State Highway and
-		_ - -		E	1]		1													* See Key to Soil Loss for list of abbreviations
{		1° -	14 -	E	SH	610	ł	1				┟┧╍┍┧╍┍┥	+1-11-		9.4	67]			SG	and descriptions of tests
F		F		Ħ]	}	1		}				╺┠┧╻┠┨╴		ļ		1				SAMPLE TYPE
1270		50-	15	E	SPT	610	(1	2	24	8	[] - [] - [] ●s	-F1-F1-		ļ	}					SPT = Standard Penetration Test, 34,9mm ID and
	Silty SAND - medium dense, wet, gray	1 7	16 -	\bigtriangledown			SM	A-2-5	1			┟┧╌┟┧╌┟╺	-┝┤-┝┤-			}					50.8mm OD split spoon sampler
F		<u>_</u>		Ø	J			ł	1		_	liiii					ļ	i			MC = Modified California Sampler, 50.8mm ID and 63.5mm OD split spoon sampler
	- dark gray	"7	17 -	$\langle \rangle$	SPT	508		1	12	17 17	24	₽ <i>┚-</i> ╘ <i>┚-</i> ╘ <i>4</i>	∎263-5-5-4- }	11	1	1					P P = Piston Sampler, 76.2 mm OD
Γ		7	10	Ŵ]			ł					1111								
F		60-	18	VA	SPT	483		1	9	11 18	8		,1111				İ	1			SH = Shelby Tube, 76.2mm OD, pushed
			19	1	4 1	{	{	{	1			[{ {				1			B BAG = Bulk Sample
		I _		Ø		Į	[ļ										I		ĺ	

· · · · ·	Boring: SB-14-313	1										T		Т	est R	lesult	51		Legacy Parkway - Preferred Alternative
5	Sheet 2 of 4			2			5	SAMPLE			● SPT (N.)		È.		Шţ	æ	2	ste	I-215 to I-15/US 89 Interchange
Į į	SAMPLE DESCRIPTION		ipth T	ĮĮ		2		Soil	N. DI		O SPT (N.)	A S	Ē	stur	F	불	20(Ë	KLEINFELDER
l 🗄 🔍	(m	Ē	Å	SE	Clas	allication	(or inte	rvaishown)		3	22	Mol	물	e e	a 2	Ę	
1						5	USCS	AASHTO			<u>s</u> 38 0	3 - 1	ā		-	<u> </u>		<u> </u>	Project No. 35-8163-05
- 1265	Silty SAND - medium dense, wet, dark gray (continued)	-	1	$\langle \rangle$	SPT	508			10 9	99						[EIELD TEST POPING LOG
		1 =	21 -		}		1	1	1		╞┧ _╍ ╞┥╍╞┥╴┊┥╴	·		1			•		PIELD TEST BORING LOG
\vdash		70-	ł	V/A	вн	610						63	14.9	31			87		Boring: SB-14-313
	SILT - medium stiff, wet, olive-gray, with a trace of fine-grained sand	1 -	- 22 -	17	4		ML.	A4	1		┟╝╌└╝╍┶┫╍┶┵╍┶┙	-							Sheet 2 of 4
┢		=		\square				-					1						
		75 -	23 -	1/2	{			1			<u>+</u>	-	ł			l			Logged by: S. Lewis Date Start: 1/17/00
F		1 =	1	\mathbb{N}															Date Finish: 1/20/00
L		80_	24 -	M		1					<u> </u>								Station: 6013+394.540 17.55 LT
Γ		- ~	-		SPT	457			34	4 6	╽╺╹╸ └┙╸┕┙╌┶╺┼╾┝┥╌┝╶┥╴	.]							Coordinates (m): N 116,647.190 E 19,184.405
1260		=	1 [∠] ³ ~	V/	1		Į –	1	{			1	Į į			(Elevation (m): 1285,358
		85 -	26 -	VA.		1		ł			┝┥╍┝┥╍┝┥╌┝┥	-}							Drill Contractor. Layne Christensen
F		=	1	\square	Ì						1 1 1 1 1 1 1 1 1 1 1								Driller: C. Davis
	Lean CLAY - stiff, wet, gray	1 =	27 -	M			CL	A-6			┟┚╌└┚╌└┫╌└┚╌└┚╴	·							Dritling Method: Mud Rotary
F		90-	1	Ħ	SH	610	Į –	{					14.9	29		ł		C	Hammer Type: Rope and Cathead
	SILT - medium stiff, wet, gray, with a trace of fine-grained sand	1 -	28 -	1	Ч		ML	A-4	1		<u> </u>	·	1						Boring Diameter: 133 mm
Γ				M															
L		99 -	29 -	VA			1	1											LEGEND/NOTES
l I		=	30-	M	L I	1	[┟ _{┫╍} ┝┫╍┝┫╍┝┥		ļ			ł			Elevations based upon North American Vertical Datum of 1988 (NAVD '88)
- 1255		100-	1	KA	-	810		A.6		5 7						l l			Coordinates are NAD '83
	Lean CLAY - medium stiff, wet, momed sign brown and light gray	=	31 -			0.0		~		, , ,	┝╶┨═╠╴╡╼╞╴┫╼╞╴┥╼	1	ł						= Observed Groundwater depth at time of drilling
		=	1					1								1			Blows = Number of blows required to drive split spoon
1		105 -	32 -		1		ł		1		- 2 2		ļ					1	sampler 150 mm or interval shown
Γ		-	-			1			Ì									[AASHTO = American Association of State Highway and
L		-	33 -															l	Transportation Officials
	City OAND wat all a constant fine to confirm amigned	110	1		вн	305	- SM	A-2-5											 See Key to Soil Logs for list of abbreviations
F	Sity SAND - wet, onve-gray, the to menutry ramed	=	17-	VA	4				l				1						and descriptions of tests
		115 -	35	14							┝┥╌┝┧╌╧┥╌┾┤╌┾┤╴								SAMPLE TYPE
-1250	SILT - very stiff, wet, gray, with sand seams		1		SPT	559	ML	A-4	9 10	5 16 12									SPT = Standard Penetration Test, 34.9mm ID and
.		-	36 -	M		1					┠┥╍┠┥╍┝┥╍┝┥╴					1			50.8mm OD split spoon sampler
		120-	-	M	l	·	1					1	l						63.5mm OD split spoon sampler
L		=	37 -	Ŵ	1		ĺ					1							P P = Piston Sampler, 76.2 mm OD
		=	1	M															
iL		125 -	38 -	KA	SH	457	-	1				ł							SH = Shelby Tube, 76.2mm OD, pushed
	Siny SAND - wet, gray, fine to medium-grained		39 -	\mathcal{D}	4		SM	A-2-3											B BAG = Bulk Sample
` ŀ	SILT - medium stiff, wet, gray, with fine-grained sand	130-		Ø] '	ML	A4				ł							
1		1.00	1	V/λ	J SPT	1	1	1	1		〒5 ())))))	1	ł			1		i	

ſ		Boring: SB-14-313													Test I	Resul	ts *		Legacy Parkway - Preferred Alternative
	5	"Sheet Sof & CST	_		Log			5	AMPLE			● SPT (N.)	1 N N		Ĩ	2	20	e ta	I-215 to I-15/US 89 Interchange
	ĒÊ	95 MICH POINSAMPLE DESCRIPTION (ASTM D 2488/D 2487)		1 	불	_	È.	-	Soil	N Blo		O SPT (N.)m (Greater than 50 Blows)	A A B	Įł,		19	201	2	KLEINFELDER
			ft	m	B	τζ.	SE		Lineatuon	(or int	arval shown)		10 M	Mol	률	la -	i i i i i i i i i i i i i i i i i i i	fte	Brokert No. 25.8163-05
				ļ			£ 10		AGINI	1	E 7 14			+	+-	+	<u> </u>	- <u> </u>	
ł	- 1245	 Lean CLAY - medium stiff, wer, light onve-gray, with seams or gray sity sand 		1	Ħ	7	1010		~~	'	3 / 14			1					FIFLD TEST BORING LOG
			135 -	41 -			{		l l			┝╶╣╍╠╸╣╍╠╸┫╍╠╸╣╼╞╴╣╸	4				1		Parine: SP 44 242
ł	•			4	Ξ								l í						Bonng: 50-14-313
I		SILT with sand - stiff, wet, olive-gray]]	42 -				ML	A4					}	{	1		}	Sheet 3 of 4
ł	•		140-	1		П ец	610						66 17.	3 20			55.		
		Sime SAMD - mertium denses wet creat five to medium-orgined with	{ _	43 -	K	Ц	1010	SM	A-2-5	ł				-				ļ	Logged by: S. Lewis Date Start: 1/17/00
ſ	•	shell fragments, mica flakes, trace of clay	-	1															Date Finish: 1/20/00
L		SILT - medium stiff, wet, gray, with sand lenses	145 —	44 -	17	l set	610	ML	A-4	4	5 6 12	┓ _┓			1				Station: 6013+394.540 17.55 LT
1			=	45 -	11	Ŋ						╶┙╍┟┙╼┝┥╼┝┥╸					1		Coordinates (m): N 116,647.190 E 19,184.405
ŀ	- 1240		=	1~~-	12														Elevation (m): 1285.358
1			150-	46			}]		└┥╍┝┤╍┡┤╌┝┤╌┝┤╴							Drill Contractor: Layne Christensen
ŀ	•		_	1	67					ł				Ì		1	1		Eniller: C. Davis
			-	47 -	£7)		1	1				- 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1	1	1	1	1	1]	Dritting Method: Mud Rotary
ŀ	•	Sitty SAND - medium dense, wet, dark gray, with shell fragments, mica	- 201	1	17	T SH	254	SM	A-2-5	ſ							1		Hammer Type: Rope and Cathead
1		fiakes	1 -	48 -	$\langle \rangle \rangle$	4			1					1		ł	1		Rod Type: AW Boring Diameter: 133 mm
f	•		160-	1	VA	1													
ł				49 -	V/A	SPT	533	1	1	5	7 14 17	╴┧╺╄╸┥╌┝╶┥╺┝╴┥╌┝╶┤╴		{		1			LEGEND/NOTES
Γ			=	·	\mathbb{N}														Elevations based upon North American Vertical Datum of
L	1235	- with slit lenses	165 -	50	VA			ļ		10	17 15 14						1	1	1988 (NAVD '88)
				61							11 13 14				ļ				V
ł			_	J	V/A		[ļ	[l				ļ	1	ļ		ļ	Blows - Number of blows required to drive split Spoon
			170—	52 -								╶┘₋└┘₋└┥╍└┘╍└┘╸	.						sampler 150 mm or interval shown
ł		Cit T unt table star with occasional fine grained sand	=	1	KA				A-4	-					1	1			USCS = Unified Soil Classification System
1		SICI + WEL BUIL BIAT, WILL OCCASIONED THE GRANICS BAILS	1 =	53 -	Į/A]					.]						AASHTO = American Association of State Highway and Transportation Officials
F	•		175	1	1/1	∏ sн	559						16.	3 24	36	5	76	C SC	
			1 =	54 -	1/1	4	1	1	1			╴┑╌┍┑╍┍┪╍┍┑╌┍┑╴			1 I	1			and descriptions of tests
ł			-	-														1	
1	- 1770		180] 55 —	E/A	1		l	1	1		- ┥- <u>┾</u> ┥-┝ ┧-┝ ┤-┝ ┤-		1			1	}	
Г	- 12.30	Silty SAND - loose, wet, ofive-gray, fine-grained, with mica flakes	=	1	\sim		1	ŚM	A-2-5	1									50.8mm QD split spoon sampler
۶Ļ	.			56 -	$\langle A$			l	ſ					1	}	{	}		MC = Modified California Sampler, 50.8mm ID and
				57	$\langle \rangle$	SPT	584	ļ		5	6 12 18		.	1		[ļ	63.5mm OD split spoon sampler
ł	.		=]"_	$\langle \! / \! \rangle$	1	1	l		l		11111111	'			{	}	ļ	P P = Piston Sampler, 76.2 mm OD
	l	SILT - very stiff, wet, gray	190	5a _	175	-	610	ML	A-4	5	6 10 10	···●■·····			1				T. SH Sheller Take 75 2mm 00 sushed
\$ŀ				1	V/	N and	100	Į	[ļ	U 10 10			ļ	ł			ł	Up sn - snewy tube, 70.2mm 00, poshed
ŝÌ			_	59 -	Ŵ				1	ĺ		- 1- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1						B BAG = Bulk Sample
ľ			195 —	ł											Į		1	1	
۰.				1	11	1	1	1	1	1			1 1	1	ſ	- E	1		

	Boring SB-14-313	Γ												Test	Resu	ts *		Legacy Parkway - Preferred Alternative
l s	Sheet 4 of 4			2			S	AMPLE			● SPT (N.)	* 2		Ĕ	2	2	ste	I-215 to I-15/US 89 Interchange
1 E	SAMPLE DESCRIPTION	D	րեհ	불	-	È.		Soli			O SPT (N.)	문희물	퇴금	× Ē	13		۴.	
		n.		5	Ŋpe	SE	Class	lification	(or in	terval shown)		0.5	포출		- <u>-</u>	1, d 2	E P	
1-						ů,	USCS	AASHTO	2		2 72 0	키고		13			<u> </u>	Project No. 35-8163-05
- 1225	SILT - very stiff, wet, gray (continued)	- 1		//					1									
		200-	61 -	//						40 45 14	┝┥╍┝┥╍┝┥╌┝┤╴							FIELD IEST BURING LUG
4	- stiff, with gravel	_			MC	010		1	"	10 13 14								Boring: SB-14-313
	- with sand	{ -	62		ļ	<u>ا</u>		[┟╜ <u>╻╹╹</u> ╏┫╍╘┚╌└┚╴				ļ			Sheet 4 of 4
\vdash		205 -				ļ		ł										
		1 -	63 -			1												Logged by: S. Lewis
⊢		-	1			1												Date Start 1/17/00
		210-	64 -	//A	SPT	610			10	13 16 19	┝┑╍┎┫╦┲┥╍┍┑╍┍┑				1			Station: 6013+394.540 17.55 LT
-		=		\square	N			ļ										Line: D MAINLINE
		=	65 -	$\langle A$							┟┥╍┝┥╍┝┨╼┝┨╌┠┥╴	i			1		ł	Coordinates (m): N 115,647,190 E 19,184,405 Elevation (m): 1285,358
1220	1	215		$\langle \rangle$		1		í –	1		1	1 1		1	1	1	1	Total Depth Drilled (m): 75.3
	Level OI Alf ware alf work array	1 -	66	24	1		CI	- A-6	ł		┝╶┥╾┝╴┥╾┾╴╣╾┝╴┩╾┝╶┩╸							Drill Contractor. Layne Christensen
	Lean CLAT - very sun, wet, giay	=					-											Rig Type: Mobile B-59
		220-	67 -		мс	610			10	17 23 20	P 18 E E E E E					1		Dritting Method: Mud Rotary
Г		-	- I			F.			ł					1			1	Hammer Type: Rope and Cathead Rod Type: AW
L		_	68 ~												1			Boring Diameter: 133 mm
Γ		225						l			/						}	
L	Sil T - very stiff wet dark offve-gray, with sand lenses		1 69 –				ML	A-4	1									LEGEND/NOTES
			7								┟┥╌┝┥╌┝┥╌┝┥╴							Elevations based upon North American Vertical Datum of
1215		230-	1,0		SPT	584		1	13	15 23 50/							}	Coordinates are NAD '83
		_	71						1	12314	┟╶┨╍┝╴┥╍┝╴┥╍┝╸┥╸							
-		-		$/\lambda$]							Blows * Number of blows required to drive split spoon
		235 -	72 -		SPT	559			15	45 24 24	╞╹╹╹╹╹╹┺┲┚╴						ļ	sampler 150 mm or interval shown
┝-		-	1 1	$\langle X$	٦			1	1		11111111111	} {			1	1		USCS = Unified Soil Classification System
1		240-	73 -	$\langle A$	l	[١.		┝							AASHTO = American Association of State Highway and Transportation Officials
F	- verv stiff	- 1	ţ İ		SPT	508			1	12 40 50/ 100m	¶ ²⁴			}	1			 See Key to Soil Logs for list of abbreviations
		=	74	M]						┟┧╌┖┧╍┖┧╍┖┧╴						1	and descriptions of tests
F		245	1	//		610				17 18 24							1	
			75		3-1	010		L	ľ	12 10 24	╞┤╍┝┤═┝┨╍┝╡╍┝┨╸		1		1			
[¹²¹⁰		-	<u> </u>					Į	l		[, , , ,] , , , ,					ļ	l	SP1 = Standard Penetration Test, 34.9mm ID and 50.8mm OD solit apoon sampler
.L		250	76 -					ł							1	1		MC = Modified California Sampler, 50.8mm ID and
]	-	1_													1		63.5mm OD split spoon sampler
:L			1 " -														1	P P = Piston Sampler, 76.2 mm OD
		255 —			Ì			1	1									
iL		=	1 '0 -															SH = Shelby Tube, 76.2mm OD, pushed
il		=	79		1	1			ł									R BAG = Bulk Sample
il-		260-	۲°٦	}	}			ł	1			}			1	1	1	
1		1 =]		1			1	1		lisiifarii				1	1		

APPENDIX C Laboratory Testing

LP OVER MILL CREEK TRAIL

E-2572

Table 1

SUMMARY OF TEST DATA

PROJECT Legacy Parkway

PROJECT NO. FEATURE 200601-139 Foundations

LOCATION Structure D-2572

(Legacy Parkway over Multi-Use Trail near Mill Creek)

	DEPTH BELOW	STANDARD PENETRATION	IN-I	PLACE	UNCONFINED	AT	TERBERG LI	MITS	MECHAI	NICAL ANA	ALYSIS	
NO.	GROUND SURFACE (ft)	BLOWS PER FOOT	DRY UNIT WEIGHT (pcf)	MOISTURE (%)	STRENGTH (psf)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT SAND	PERCENT SILT & CLAY	CLASSIFICATION SYSTEM / (AASHTO Classification)
RSB-39-624	9-10.5	Shelby	89.0	30.7	1973	46	23	23	0	1	99	CL / A-7-6(26)
	15-16.5	Shelby	86.4	31.2	954	44	19	25	0	3	97	CL / A-7-6(26)
	25-26.5	Shelby	89.4	32.5	1378	41	20	21	0	8	92	CL / A-7-6(20)
	40-41.5	18		23.7				NP	0	85	15	SM / A-2-4(0)
	53-54.5	Shelby	73.1	48.3		73	24	49	0	2	98	CH / A-7-6(55)
	73-74.5	Shelby	91.3	29.5		35	21	14	0	1	99	CL / A-6(15)
RSB-39-625	6-7.5	Shelby	98.7	26.3	3460	44	20	24	0	5	95	CL / A-7-6(24)
	18.5-20	Shelby	82.4	38.7	1856	51	20	31	0	20	80	CH / A-7-6(25)
	43.5-45	Shelby		24.9		60	18	42	0	13	87	CH / A-7-6(39)
	48.5-50	16		22.4		30	18	12	0	28	72	CL / A-6(7)
	53.5-55	Shelby	101.7	22.8	1085	32	18	14	0	31	69	CL / A-6(8)
	73.5-75	Shelby	89.7	32.3	2088	42	19	23	0	1	99	CL / A-7-6(24)
RSB-39-626	3-4.5	Shelby	95.6	26.0	2179	43	20	23	0	1	99	CL / A-7-6(25)
	9-10.5	Shelby	87.6	29.4	1982	47	21	26	0	1	99	CL / A-7-6(29)
	15-16.5	Shelby		30.8		56	20	36	0	5	95	CH / A-7-6(36)
	23.5-25	Shelby	94.8	28.9		61	25	36	0	0	100	CH / A-7-6(42)
	43.5-45	Shelby	93.8	29.6	2096	68	21	47	0	13	87	CH / A-7-6(44)
	73.5-75	Shelby	88.1	32.4	4082	54	22	32	0	2	98	CH / A-7-6(35)
	83.5-85	76		18.0		·		NP	0	86	14	SM / A-2-4(0)
RSB-39-627	3-4.5	Shelby	104.3	26.2	2160	40	21	19	0	0	100	CL / A-6(21)
	9-10.5	Shelby	98.4	28.0	1879	45	22	23	0	2	98	CL / A-7-6(25)
	13.5-15	Shelby	97.7	27.5	2154	55	22	33	0	11	89	CH / A-7-6(32)
	33.5-35	Shelby	76.0	45.1	1570	54	21	33	0	2	98	CH / A-7-6(36)
	53.5-55	Shelby	95.2	26.8	1950	41	21	20	0	3	97	CL / A-7-6(21)
	65-66.5	21		23.0				NP	0	92	8	SP-SM / A-1-b(0)
	78.5-80	Shelby	90.6	27.7	1662	41	22	19	0	1	99	CL / A-7-6(21)

NP=Nonplastic

TRIAXIAL SHEAR TEST HOLE NO.: RSB-39-624 ENGINEERING Project: Legacy Parkway - Structure D-844 (Legacy Parkway Over Multi-Use Trail Near Mill Creek) DEPTH: 15'-16.5' Davis County, Utah

Figure

INC. Provo, Utah

RB&G

RB G	RB&G ENGINEERING INC.	TRIAXIAL SHEAR TEST Project: Legacy Parkway - Structure D-844 (Legacy Parkway Over Multi-Use Trail Near Mill Creek) Davis County, Utah	HOLE NO.: RSB-39-624 DEPTH: 15'-16.5'	Figure
C	ENGINEERING INC. Provo, Utah	(Legacy Parkway - Structure D-044 (Legacy Parkway Over Multi-Use Trail Near Mill Creek) Davis County, Utah	DEPTH: 15'-16.5'	1

LP OVER MULTI-USE TRAIL & D&RGW RR

E-2573

Table 1

SUMMARY OF TEST DATA

Legacy Parkway PROJECT Structure E-2573 (D&RG Trail Underpass) LOCATION

FEATURE

PROJECT NO. 200601-143 Foundations

HOLE NO.	DEPTH BELOW GROUND SURFACE (ft)	STANDARD PENETRATION BLOWS PER FOOT	IN-PLACE			ATTERBERG LIMITS			MECHANICAL ANALYSIS			
			DRY UNIT WEIGHT (pcf)	MOISTURE (%)	STRENGTH (psf)	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	PLASTICITY INDEX (%)	PERCENT GRAVEL	PERCENT Sand	PERCENT SILT & CLAY	CLASSIFICATION SYSTEM / (AASHTO Classification)
RSB-X3-628	10-11.5	Shelby	105.8	24.2	1602	38	18	20	0	7	93	CL / A-6(19)
	20-21.5	Shelby	86.8	33.0		43	19	24	0	3	97	CL / A-7-6(25)
	40-41.5	Shelby	101.9	23.6	2653	45	22	23	0	7	93	CL / A-7-6(23)
	50-51.5	Shelby	113.1	29.0		55	23	32	0	1	99	CH / A-7-6(36)
	70-71	Shelby	89.0	33.0	1244	44	20	24	0	31	69	CL / A-7-6(15)
	71-71.5	Shelby		21.9		43	18	25	0	53	47	SC / A-7-6(7)
	80-81.5	Shelby		28.9		33	18	15	0	4	96	CL / A-6(14)
RSB-X3-629	0-1.5	17		2.3				NP	66	29	5	GP-GM / A-1-a
	10-11	Shelby	97.8	25.0	2141	47	20	27	0	7	93	CL / A-7-6(27)
	15-16	Shelby	102.7	25.0	4337	37	20	17	0	2	98	CL / A-6(18)
	25-26.3	Shelby	91.6	33.2	1998	39	20	19	0	3	97	CL / A-6(20)
	40-41.5	Shelby	85.1	31.5	1902	49	21	28	0	1	99	CL / A-7-6(31)
	65-66.5	63		14.5				NP	4	78	18	SM / A-1-b
	75-76.5	Shelby	87.6	34.9	671	48	20	28	0	1	99	CL / A-7-6(31)
												· · · · · · · · · · · · · · · · · · ·
					· · · · · · · · · · · · · · · · · · ·							
	,							1				

NP=Nonplastic

APPENDIX D Supplemental Data

Legacy Parkway Project

Summary of Lateral Earth Pressure Recommendations

Fill Description	Total Unit Weight (pcf)	Internal Friction Angle (degrees)	Cohesion (psf)	Comments
Sandy Gravel	150	38	0	Recommend 150 pcf and 38 degrees for loads, and 125 pcf
Silty Sand	125	34	0	and 34 degrees for resistance.*
Pumice	85	38	0	Recommend 85 pcf for loads and 80 pcf for resistance.*
h.				*Recommendations per Memo dated April 18, 2006

Recommended Soil Parameters

(1) Active Lateral Earth Force (yielding walls)

 $P_A = 0.5 K_A \gamma H^2$ (triangular distribution)

 $K_{A} = 0.24$ for Sandy Gravel and Pumice

0.28 for Silty Sand

In the equations listed herein:	
---------------------------------	--

H = height of wall

$\gamma = c$	effective	unit	weight	of	soil
--------------	-----------	------	--------	----	------

(2) Passive Lateral Earth Force (yielding walls)

 $P_{\rm P} = 0.5 K_{\rm P} \gamma {\rm H}^2$ (triangular distribution)

 $K_P = 4.2$ for Sandy Gravel and Pumice

3.5 for Silty Sand

(3) At-Rest Lateral Earth Force (non-yielding walls)

 $P_0 = 0.5 K_0 \gamma H^2$ (triangular distribution)

 $K_0 = 0.38$ for Sandy Gravel and Pumice

0.44 for Silty Sand

(4) At-Rest Lateral Earth Force Modified for Compaction (non-yielding walls)

Use if activity of mechanical compaction equipment is anticipated within a distance equal to half the wall height.

General Equations for walls less than about 8 feet high

 $P_0^* = 0.5 K_0 \gamma H^2$ (triangular distribution)

 $K_0^* = 2.8$ for Sandy Gravel and Pumice

Walls greater than 8 feet high should be considered on a case-by-case basis. Pressures listed above may be reduced by limiting size of compaction equipment permitted within a distance equal to half the wall height.

(5) Seismic Lateral Earth Forces (yielding walls)

Probabilistic Peak Ground Accelerations

General Bridge Site Location	10% PE in 50 Years	2% PE in 50 Years
From Mill Creek North	0.22g - 0.26g	0.60g - 0.63g
South of Mill Creek	0.26g - 0.30g	0.65g - 0.73g

Equations by Okabe (1926) and Mononobe and Matsuo (1929), referenced in Kramer (1996)

Total Active Thrust

 $P_{AE} = 0.5 K_{AE} \gamma H^2$ K_{AE} = (see table below) **Dynamic Component**

 P_A has triangular distribution (resultant at H/3 above base of wall) $\Delta P_{AE} = P_{AE} - P_{A}$ ΔP_{AE} acts at about 0.6H above base of wall (same direction as P_A)

(5) Seismic Lateral Earth Forces (continued from previous page)

$$\frac{\text{Total Passive Thrust}}{P_{PE} = 0.5K_{PE}\gamma H^2}$$
$$K_{PE} = (\text{see table below})$$

Dynamic Component

$$\Delta P_{PE} = P_P - P_{PE}$$

 P_P has triangular distribution (resultant at H/3 above base of wall)

 ΔP_{PE} acts at about 0.6H above base of wall (opposite P_P)

Dynamic Earth Pressure Coefficients (for minimal wall displacement*)

Case	Friction	Peak Ground Acceleration				
	Angle	0.25	0.30	0.63	0.73	
Active (K _{AE})	38	0.35	0.38	0.65	0.77	
	34	0.41	0.44	0.75	0.92	
Passive (K _{PE})	38	3.77	3.68	3.01	2.76	
	34	3.14	3.05	2.39	2.11	

* Assumes k_h = 0.8PGHA. See memo dated April 18, 2006

Dynamic Earth Pressure C	Coefficients (for w	all displacement up	to 10A inches**)
--------------------------	---------------------	---------------------	------------------

Case	Friction	Peak Ground Acceleration				
	Angle	0.25	0.30	0.63	0.73	
Active (K _{AE})	38	0.31	0.32	0.44	0.49	
	34	0.36	0.37	0.51	0.56	
Passive (K _{PE})	38	3.94	3.89	3.51	3.38	
	34	3.29	3.24	2.89	2.77	

** Assumes k_h = 0.5PGHA. See memo dated April 18, 2006

(6) Seismic Lateral Earth Pressures (non-yielding walls)

Equations by Wood (1973), referenced in Kramer (1996)

Dynamic Thrust

 $\Delta P_{eq} = a_h \gamma H^2$

 a_{h} = Peak Ground Acceleration Coefficient (PGA/g)

Dynamic Overturning Moment

 $\Delta M_{eq} = 0.53 a_h \gamma H^3$

Point of Application of Dynamic Thrust

$$h_{eq} = \Delta M_{eq} / \Delta P_{eq}$$

 $\approx 0.53 H$

References

Kramer, S. (1996). "Geotechnical earthquake engineering," Prentice Hall, Upper Saddle River, NJ.

Mononobe, N. and Matsuo, H. (1929). "On the determination of earth pressures during earthquakes," Proceedings, World Engineering Congress, 9 p.

Okabe, S. (1926). "General theory of earth pressures," *Journal of the Japan Society of Civil Engineering*, Vol. 12, No. 1.

Memo

To: Sohail T. Khan, P.E; Larry Reasch, P.E.
From: Brad Price / Rob Johnson
CC: Steven K. Doerrer, PE; Brian Byrne, PE
Date: April 18, 2006
Re: Response to Design Criteria Questions

Responses to the questions submitted by Steven Doerrer are listed below. The email listing the questions is also attached for reference:

- 1) As discussed on last week's conference call (4/26/06), recommended total unit weights for fill material are as follows:
 - Regular-Weight Fill 150 pcf for load calculations, 125 pcf for resistance calculations
 - Lightweight Fill (Pumice) 85 pcf for load calculations, 80 pcf for resistance calculations

It has been noted that the unit weight of regular-weight fill varies widely depending upon the source. However, it is our understanding that it is not desirable to limit the potential regular-weight borrow sources by specifying a permissible range of fill unit weight. In the interest of conservatism, we recommend using the larger unit weight to calculate soil loads, and the smaller unit weight to calculate soil resistance. The following values are recommended for fill friction angle:

- Regular-Weight Fill 38 degrees for load calculations, 34 degrees for resistance
- Lightweight Fill (Pumice) 38 degrees for load and resistance calculations
- 2) The Mononobe-Okabe equations are in accordance with AASHTO LRFD A11.1.1.1 and do not include inertia forces. Page 11-85 of the AASHTO LRFD states that it is not conservative to neglect inertia forces of the abutment mass. We believe it is appropriate to add seismic inertia forces of the heel backfill and concrete abutments.
- 3) The dynamic earth pressure coefficients provided previously, K_{AE} and K_{PE} , are for total active and passive thrust, respectively, and include both static and dynamic components. The dynamic components are ΔK_{AE} and ΔK_{PE} and are computed by subtracting the static force from the total thrust as shown on the memo. It should be noted that the equations by Wood (1973) for non-yielding walls provide only the dynamic thrust components of force and moment, and do not include static components.
- 4) In the memo dated 04/17/06, the horizontal acceleration coefficient k_h was assumed to be 80% of the peak horizontal ground acceleration coefficient for calculation of the Mononobe-

Okabe coefficients K_{AE} and K_{PE} . AASHTO LRFD A11.1.1.2 states that a k_h value equal to $\frac{1}{2}$ the PHGA is adequate for most design purposes, provided that allowance is made for an outward displacement of the abutment of up to 10A inches (see page 11-88), where A is the maximum acceleration coefficient (PHGA). Mononobe-Okabe coefficients for the 50% reduction are summarized below, and may be used if allowance is made for the corresponding displacement.

Case	Friction	Peak Ground Acceleration Coefficient				
	Angle	0.25	0.30	0.63	0.73	
Active (K _{AE})	38	0.31	0.32	0.44	0.49	
	34	0.36	0.37	0.51	0.56	
Passive (K _{PE})	38	3.94	3.89	3.51	3.38	
	34	3.29	3.24	2.89	2.77	

If displacement must be minimized, we recommend that the factors shown in the initial memo (04/17/06) be used.

It should be noted that the Mononobe-Okabe factors provided to date neglect vertical acceleration. Seed and Whitman (1970) concluded that vertical accelerations can be ignored when the Mononobe-Okabe analysis is used to estimate P_{AE} for typical wall design (see Kramer, 1996). It is estimated that positive vertical accelerations, if considered, may increase the Seismic Active Thrust coefficient (K_{AE}) by as much as 30%. If desired, the coefficients on the table above can be refined to consider vertical acceleration once Peak Vertical Ground Accelerations have been determined (see Response No. 7 below).

- 5) We can evaluate the potential pile capacities at different depths and provide results along with uplift. It is assumed that the request of estimated pile tip elevations for compression resistance of 70, 100, and 120 tons applies only to the Pedestrian Bridge over Legacy Parkway (P-21). At any bridge we can evaluate the potential for providing a specific resistance per pile if we are provided with the desired resistance values (see also Response No. 6 below). The given extreme event capacities assume a resistance factor of 1.0, and are reduced for potential liquefaction.
- 6) It is possible to consider pile diameters larger than 16", although driven piles with diameters/widths greater than 16" are somewhat rare locally and local pile driving capabilities may be limited. Also, it is our understanding that a consistent pile section is preferred for the project to limit potential errors and confusion (primarily during construction). Is increased axial resistance the only reason for considering larger diameter piles? We would like to know the specific purpose for considering other diameters (such as target resistance values), as it would be inefficient to estimate capacities for an unlimited range of diameters, toe elevations, etc.
- 7) Kleinfelder is working on site-specific response spectra for 1250 West and State Street. It is our understanding that this data will be used to develop general response spectra (including vertical accelerations) for use at all bridge sites.
- 8) It was agreed at a previous meeting that the structural firms would perform the LPILE analysis using soil parameters provided by the geotechnical engineer. We recommend that p-

multipliers be used as input in LPILE or GROUP to account for group effects. As noted on the LPILE parameters sheet included with the initial recommendations for each structure, p-multipliers for laterally-loaded pile groups are outlined in AASHTO LRFD 10.7.2.4. The factors listed in the 2006 LRFD interim are in relatively good agreement with full-scale pile group lateral load tests performed at the Salt Lake City International Airport, where shallow soils are reasonably representative of the shallow soils typically encountered at the Legacy bridge sites.