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AVALANCHE DYNAMICS:
Engineering Applications for Land Use Planning
Charles F. Leaf and M. Martinelli, Jr.

INTRODUCTION

Concerns and Objectives

In this era of rapidly increasing recreation ac-
tivity and intense resource development in snow-
covered mountainous areas, careful planning to
insure compatibility with natural processes is es-
sential if tragic side effects are to be minimized.
Although highways and railroads are typically
most vulnerable to avalanche activity, the recent
trend toward development of permanent housing
in the runout zone of potentially devastating ava-
lanches invites unprecedented disaster.

In the United States, when avalanche hazards
were first recognized, the tendency was to con-
sider explosive control. More recently, serious
consideration has been given to structural solu-
tions to the problem. In many cases, structural
control is the only feasible alternative (USDA FS
1975). However, as with flood plains and other
hazardous areas, there are important nonstruc-
tural alternatives that must also be considered.
One of the best solutions, which by its very na-
ture provides and insures opportunities for en-
vironmental quality and efficient land use, is that
of regulating the use in avalanche areas. Zoning,
subdivision regulations, building codes, and simi-
lar ordinances can be enacted which will: (1) pro-
vide for open space in critical avalanche-prone
areas, and (2) require that if structures must be lo-
cated in avalanche areas, they be designed to
withstand the dynamic loadings imposed by ava-
lanches. Recently enacted land use legislation in
Colorado (Colorado, State of, 1974) designating
avalanches and certain other natural hazards as
“areas of State concern” should be a great aid in
preventing major avalanche problems. Fortu-
nately, there is still time in most of the mountain-
ous areas of North America for the recognition
and zoning of avalanche areas prior to large-scale
development. However, the technical and legal

guidelines to do this effectively are generally un-
available.

Two technical problems associated with land
use planning in avalanche-prone areas are ap-
parent. One has to do with forecasting avalanche
occurrences, and the second deals with avalanche
dynamics. Avalanche forecasting permits con-
tinued use of avalanche-prone areas with evacua-
tion and control during periods of extreme haz-
ard. An understanding of the dynamics of ava-
lanches permits: (1) structures to be safely lo-
cated outside the limits of the largest expected
avalanches, and (2) determination of impact loads
that must be withstood by existing and proposed
structures in the avalanche path, such as high
voltage transmission towers, bridges, or build-
ings.

The approach and equations offered here were
first modified for use in avalanche problems from
classic fluid dynamics principles by Voellmy
(1955). Recent changes suggested by the work of
Schaerer (1973, 1975a), Salm (1966), and Mears
(1975, 1976, 1977) have expanded the original
work without greatly changing the underlying
concepts. The basic approach, although empirical
in nature, is objective and therefore easily reex-
amined and modified as needed. It is felt that ef-
fective avalanche zoning requires an engineering
approach for the determination of avalanche run-
out distances and impact forces. Part II demon-
strates that reasonable values can be obtained for
these parameters with proper field data and equa-
tion coefficients. For zoning purposes, the first
job is to identify and delineate areas of potential
avalanche danger (Rogers et al. 1974, Mears
1977). Next, avalanche danger within these areas
must be quantified, preferably by some objective
method. Finally, the degrees of acceptable risks
must be determined by consensus of the popula-
tion and the local government agencies.



The objective of this report is to outline meth-
ods whereby our status of knowledge in ava-
lanche dynamics can be used to provide a unified
engineering approach from which guidelines can
be developed for quantifying avalanche hazards.

Our Approach

Avalanche Dynamics

Part I of this report is a review of our status of
knowledge of avalanche dynamics. It is not a de-
tailed discussion of the theory, but rather, a sys-
tematic compilation of equations which, despite
the limited scientific data available, appear to be
adequate for engineering applications. It is based
primarily on work by Voellmy (1955), who made a
rigorous analysis based on observations of struc-
tural damage immediately after avalanche occur-
rences in Austria. Since Voellmy’s work, other
studies have confirmed his approach and have im-
proved his equations. Much work is still needed,
however, on the theoretical background of ava-
lanche dynamics.

In the authors’ opinion, this review is a realistic
appraisal of the engineering tools available to
help solve avalanche problems. These tools re-
duce complex avalanche phenomena to a predict-
able pattern of dimensions, forces, densities, and
speeds that account for the release of snow in the
starting zone, its concentration in the track, and
its ultimate deposition in the runout zone.

The equations are mostly for large avalancheg
that run on unconfined slopes. Channelization of
the avalanche leads to greater flow depths,
greater velocities, and longer runout distances,
Channelization can usually be handled by adjust.
ing the flow height or by continuity calculationg
using the hydraulic radius and hydraulic depth.

Field Verification

Many of the equations in Part I have been for-
mulated into a computerized model that simu-
lates the major components of avalanche dy-
namics. However, because any engineering sys-
tem must be formulated with a certain amount of
empiricism, field calibration is extremely impor-
tant in order to build confidence in its use. The
system was calibrated against published compila-
tions of field data (Frutiger 1964, Gallagher 1967,
Williams 1975) and unpublished observations.

This work, presented as Part II, accomplishes
two things. First, it provides preliminary illustra-
tions of procedures for avalanche analyses. Sec-
ondly, it focuses on the need for systematic com-
pilation of field data on: (1) flow and frictional re-
sistance of avalanches under a variety of condi-
tions; (2) runout distances; (3) extent, character,
and amount of debris in the runout; (4) longitudi-
nal profiles; and (5) fracture heights or some other
estimate of average slab thickness.



PART 1. AVALANCHE DYNAMICS

Recognition of Avalanche Areas

No single group of terrain features character-
izes avalanche-prone areas (Martinelli 1974). Haz-
ardous areas vary from deeply incised gullies to
proad, uniform slopes. They may be in steep ter-
rain or on slopes with gradients less than 30 de-
grees. A useful indicator of avalanche activity in
forested areas is the absence of trees in conspic-
uous strips oriented perpendicular to the con-
tours. However, the presence of forest cover does
not preclude avalanche activity. Many ava-
lanches occur in scattered timber. Above timber-
line, such features as large cornices, well-defined
cirques, and steep topography are potential con-
tributors to avalanche activity.

Avalanche Types and Classification

The dynamics of avalanches is determined by
many interrelated factors, including the type and
amount of snow, manner of deposition, and to-
pography. Accordingly, an understanding of
basic avalanche types is a prerequisite to any the-
oretical analysis of avalanche motion. Detailed
discussions of avalanche types and their classifi-
cation are available elsewhere (Mellor 1968, de
Quervain et al. 1973, Perla and Martinelli 1976).

It is important to differentiate several types of
avalanche motion. In powder avalanches, most of
the snow swirls through the air as a snow dust
cloud. In flowing avalanches, most of the snow
moves in a turbulent, tumbling motion near the
ground. In mixed-motion avalanches, the snow
moves in a combination of these two types of mo-
tion. Large blocks and particles bounce and
tumble along the ground; smaller particles are
airborne. Flowing and mixed-motion avalanches
may be either dry or wet, depending on moisture
conditions in the snow. Also, they may run on a
snow layer, or they may penetrate through the
pack and run on the ground. The former are called
surface avalanches; the latter full-depth ava-
lanches. .

Fluid Analogy for Avalanche Motion

Flowing snow usually behaves much like a
fluid. In reality, the avalanche medium consists
of fine grains or clumps of snow which move by a
combination of saltation and suspension. The
most logical analogy is to assume that the prin-
ciples of fluid mechanics apply, however, so that
the concepts of conservation of mass, momen-
tum, and energy can be used to study avalanche
motion, This fluid analogy of avalanche dynamics
has been more or less substantiated several times
through study of density currents (Shen and
Roper 1970, Tochon-Danguy and Hopfinger
1975). Also, Losev (1969) argued that the motion
of an avalanche should not be treated like that of
a solid body. Although some will argue that slab
avalanches are an exception to this concept, sub-
sequent equations will show that, once the snow
gives way, speeds are sufficient to disintegrate
much of the slablike structure, thus transforming
the avalanche into fluidlike motion.

Moskalev’s (1966) review of avalanche mechan-
ics indicates that the study of avalanche dy-
namics may have originated in Russia in the
1930’s. Although this work was known in some
European circles, avalanche dynamics was also
studied independently in Western Europe and
Japan.

The most comprehensive and far-reaching
treatment of avalanche dynamics is the outstand-
ing paper by Voellmy (1955), “Uber die Zersto-
rungskraft von Lawinen.”” It presents a rigorous
analysis based on intensive observations of struc-
tural damage immediately after avalanches in
Austria.

In the authors’ opinion, Voellmy developed the
most acceptable and unified approach to the solu-
tion of avalanche dynamics problems. Accord-
ingly, this review is essentially a summary of
Voellmy’s work, with some minor revisions and
refinements where subsequent research has im-
proved the original equations.

Mears (1975) pointed out, however, that the as-
sumptions required for the use of Voellmy’s equa-



tions —the two friction coefficients, § and pu, and
flow height, h’, discussed subsequently in this re-
port—make it desirable to seek any field evidence
of impact force or flow height to use as a check on
computations.

Fluid Properties

Calculations required in the study of the dy-
namics of avalanches bring up important ques-
tions about snow properties. Because flowing
snow is assumed to behave as a fluid, definite dis-
tinctions must be maintained between weight,
force, and mass, and between specific weight and
density.

The properties of fluids are discussed in various
textbooks (Binder 1955, Ference et al. 19586,
Streeter 1958, Albertson et al. 1960). However,
these important concepts are also discussed in ap-
pendix A, because they are essential for a clear
understanding of avalanche phenomena.

Avalanche Velocity and Flow Height

Mellor (1968) has shown that the flow of de-
veloped avalanches is decidedly turbulent, with
Reynold’s numbers (Re) of 10° to 10*° for mean
downslope velocities of between 10 and 100
meters per second (m/s). Accordingly, viscosity is
an unimportant flow parameter in virtually all
avalanche situations.

The velocity equations derived by Voellmy
(1955) are based primarily on the assumptions of
uniform open-channel flow (Chow 1959). Similar
equations can also be developed using the prin-
ciples of fluid resistance (Albertson et al. 1960).
Shen and Roper (1970) found that Voellmy’s ve-
locity equation for powder avalanches conforms
with experimental results obtained from density
current studies, and that Voellmy’s suggested
value for the turbulent friction coefficient (£) of
400 to 600 m/s? will give a reasonable estimate of
the terminal velocity of a powder avalanche flow-
ing over a hydrodynamically smooth boundary.
For engineering design, however, they proposed ¢
= 750. More recent work (Schaerer 1975a) indi-
cates that £ may be as high as 1800 for an ava-

lanche moving over a smooth snow cover with no
trees.

It should be emphasized that, because
Voellmy’s turbulent friction coefficient (£) is not a
fixed value, selecting the proper value of ¢ re.
quires a basic knowledge of several factors,
Voellmy’s turbulent friction coefficient can be re-
lated to roughness factors which affect the flow of
water in open channels. These factors include the
Chezy coefficient (C) and Manning’s roughness
coefficient (n). The factors that exert the greatest
influence on Manning’s n are well described by
Chow (1959):

Surface roughness

Vegetation

Channel irregularity

Channel alinement and slope
Channel stability

Obstructions

Size and shape of channel

Stage and discharge

Suspended material and bedload

At the present state of knowledge, the selection
of a correct value of ¢ involves several intan-
gibles; thus estimates should be tempered by en-
gineering judgment and experience. Although
theoretical studies on the mechanics of open-
channel flow have not yet completely explained
problems (Chow 1959), these studies have shown
that it is possible to interpret the empirical
roughness coefficients by means of theoretical
equations for uniform flow. In practice, however,
even for open-channel flow in large rivers, experi-
ence and judgment are most often used rather
than theoretical equations which, at best, require
some difficult assumptions.

Velocity

Several investigators have developed equations
for the maximum velocity of an avalanche
(Voellmy 1955, Salm 1966, Mellor 1968, Shen and
Roper 1970). All of these equations are similar in
spite of the fact that different approaches were
used for solving the problem. The basic form of
the equation for flowing avalanches is:



Loae = £h' (L= y5/y) (sin ¢ - pcos y) 1

where
Vmax = the terminal velocity, in m/s,

£ =the coefficient of turbulent friction, in
m/s?,

h’ =the vertically measured height of flow
of the avalanche, in meters,

Ya = the specific weight of air (approx. 1.25
kg/m?, at sea level, or 1.0 at most ava-
lanche sites),

v = the specific weight of the flowing snow,
in kg/m?, '

v = slope of the avalanche path, in degrees,
and

b =the coefficient of friction of motion
(kinetic friction).

Equation [1] assumes: (1) no correlation be-
tween kinetic friction and speed, (2) constant ava-
lanche mass,3 and (3) uniform incline of the path.
Voellmy assumed that the kinetic friction term (u)
varied from /1000 to +/2000; however, recent
work by Schaerer (1975a) has shown that p has a
significant effect on avalanche speeds less than
50 m/s. This dependence can be expressed as:

L <05 [1a]

3perhaps one of the most obvious criticisms leveled at
this assumption is that, in reality, the mass increases when
an avalanche overrides snow in the track. This growth can
be longitudinal, lateral, or both, depending on snow and
boundary conditions. Quantification of the change in mass
with distance is extremely difficult. Mellor (1968) and
Moskalev (1966) derived rather complex equations, which
Mellor was careful to point out: ““afford little insight into the
effects of the entrainment” without better definition of the
relative magnitudes of the constants. In discussing nomo-
graphs based on highly detailed analyses which also took
entrainment into consideration, Moskalev (1966) stated
that: “the motion of avalanches is determined by rather
numerous factors, most of which cannot be taken into ac-
count with satisfactory accuracy. In the computations it al-
ways is necessary to make a number of assumptions and
their final result to a certain degree is conditional. There-
fore, theoretically more rigorous, but complex formulas do
not always have an advantage over simpler ones.”

where w = a parameter which Schaerer found to
be 5 m/s. Schaerer suggests that p = 0.5 is an
upper limit for slow-moving avalanches. Al-
though eq. [1a] is based on limited data, it pro-
vides an objective estimate of p and is used in
subsequent equations for terminal velocity in this
report. When calculating runout distance, how-
ever, it is often informative to use several values
of i to get an idea of the range of runout distances
to be expected with different snow conditions.
For normal snow conditions, x varies from 0.15 to
0.20 in the upper part of the runout zone, to 0.5 at
the end. For very wet or powder avalanches, 0.1
may be a better value.

If the velocity dependence of kinetic friction is
included, eq. [1] can be rewritten as:

Vipar = £h' (1 ygfy) (sin ¢ - V'i_ cosy)  [1b]

Schaerer’s work has confirmed that eq. [1], first
suggested by Voellmy (1955), is adequate for de-
termining the speeds of fully developed flowing
avalanches. He points out that in addition to p
the mean velocity is a function of the turbulent
friction coefficient (£), which depends on the con-
dition of the avalanche track. Based on field ob-
servations, Schaerer (1975b) suggests the follow-
ing values of &:

1200-1800 m/s?
500-750 m/s?
400-600 m/s?
150-300 m/s?

Smooth snow cover, no trees
Average, open mountain slope
Average gully ,
Slope with boulders, trees, forests

These values bracket the 500 m/s? suggested by
Voellmy (1955) and the 750 m/s? proposed by
Shen and Roper (1970).. ,

The theoretical equations for uniform flow indi-
cate that the mean velocity may be strongly de-
pendent upon the shape of the channel. Accord-
ingly, Voellmy’s velocity equation [eq. 1], which
was derived for unconfined slopes, can be modi-
fied for other cross sections to:

5 Dcosy]

fax = E(1- 'Ya/'Y) [R sin y- Vo (2]



in which :
R = the hydraulic radius (A/P*), in meters,
and

D = thehydraulic depth (A/T*), in meters,
where

A = cross-sectional area, in m?,
P* = “wetted’’ perimeter, in meters, and
T* = top width, in meters.

The hydraulic radius and hydraulic depth can
be expressed in terms of the avalanche flow
height (h’) for various cross sections. Chow (1959)
summarizes formulas for computing the proper-
ties of several geometric shapes. For complex nat-
ural channels, R and D can be computed from
field measurements. It should be noted that, for a
very wide channel (width approximately 10 times
greater than flow depth), h’ = Randh’ = D and
eq. [2] reduces to eq. [1b] for the rectangular and
trapezoidal sections.

Voellmy found that an avalanche reaches 80
percent of its terminal velocity when it has trav-
eled the distance s, and that:

s;=05¢h'/g [3]

where
s, = the distance required for an avalanche to
reach 80 percent of terminal velocity, and
g  =the acceleration of gravity (approx. 10

m/s?).

When the hydraulic radius, (R) is substituted, eq.
[3] results in the expression:

s.=0.5tR[g [4]

Moreover, if £ is 500 m/s?® as suggested by
Voellmy:

s, = 25R [5]

where R varies according to channel cross sec-
tion. The practical significance of egs. [3] and [5]
is that terminal velocity is reached after very
short initial distances. Therefore, as Voellmy
points out, defense structures in the starting zone
can often be subjected to loadings imposed by
sliding snow rather than from creep pressure.
Equation [2] can be reduced to the familiar
Chézy steady flow formula for open channels if
valv and p are neglected. In this case, the Chézy

resistance coefficient, C = £/?and sin y = tan y
= S. Thus:

V =C+VRS [6]

Equation [6] has significant practical value
since it can be correlated with parameters easily .
measured in the field. Because R is some function
of h’ (h' = R for wide channels), the maximum
velocity is a parabolic function of vertical frac-
ture height in the starting zone. Powder and flow-
ing avalanches often involve only the new snow;
full-depth avalanches, on the other hand, usually
fracture to the ground.

In eq. [6], Voellmy has shown when:

-S> g/& + u: flow is supercritical,4

S < gft + u: flow is subcritical.

Salm (1966) has taken issue with the concept of
supercritical flow in dense (slab) avalanches,
arguing that there can be no.propagation of sur-
face waves. However, Mellor (1968) showed that
the flow is supercritical for both slab and powder
avalanches, using data originally published by
Voellmy. Voellmy suggested that for ¢ = 500
m/s?, supercritical flow can theoretically occur on
any gradient greater than approximately 2 per-
cent. He also suggested that the Chézy coefficient
(in metric units) varies between 20 and 25, which
corresponds to a turbulent friction coefficient (£)
between 400 and 600. Since the velocity of fric-
tionless motion can never be exceeded, it can be
shown that ¢ cannot exceed the upper boundary
value:

£ < (2gs)R
where s > s, is given by eq. [4].

According to Voellmy (1955) “as a rule, the en-
tire motion process of avalanches need not be
studied in view of the short starting distances of
avalanches . ..”; hence, V,,.. = V for practical
applications.

It might be helpful at this point to show the
general relationship between the Chézy coeffi-
cient (C), Manning’s roughness coefficient (n), and
Voellmy’s turbulent friction coefficient (£), since

4 Voellmy called subcritical flow “streaming flow” and
supercritical flow “‘shooting flow.”



many engineers are familiar with the first two.
Chow (1959) shows that, in metric units:

C= —Rvs [7)

where R is hydraulic radius. If the density terms,
valv, and the internal friction term, u, are ignored
in equation [1] for avalanche velocity (V), it be-
comes:

V = « th' (slope term)

where h’ is flow height, and equal to hydraulic
radius (R) for broad slopes. This is the same form
as the familiar Chézy formula {see Eq. 6) for uni-
form flow in open channels:

V =C~RS

where R is hydraulic radius, V is velocity, and Sis
a slope term. Thus C is proportional to v/ £. If we
allow C = +/ £ and substitute in equation [7], it
becomes:

RIIG

n= JE

From this equation, values of n as a function of ¢
and R can be computed (table 1).

Table 1.—Comparison of Manning’'s n and
Voellmy’s ¢ for R equal to 1, 2, and 3 m.
(Natural streams normally have n values of

. 0.02 to 0.08.)

Values of n for R equal to:
¢ Im 2m  3m
150 0.082 0.092 0.098
300 .058 .065 .069
400 .050 .056 .060
500 .045 .051 .054
600 .041 .046 .049
750 037 .041 044
1000 .032 .035 .038
1200 .029 .032 .035
1500 .026 .029 .031
1800 .024 .026 .028
2000 .022 025 027
2500 .020 .022 .024
3000 018 .020 - .022

Flow Height

Flow height (h’) is dependent on type of ava-
lanche motion and fracture depth. Three types of
motion—flowing, mixed motion, and powder—
and one fracture depth—full depth—are con-
sidered.

Flowing Avalanches.—In flowing avalanches,
the height of the sliding snow layer remains con-
stant for a relatively long time. In this case, v, /y
in eq. [2] can be neglected, and the velocity is com-
puted by:

Vi=¢ [Rsiny - %’D cos y] (8]

Voellmy (1955), Mellor (1968), and Losev (1969)
all agree that, after exceeding a velocity of about
10 m/s, blocks of sliding snow are disintegrated.
As the result of turbulent flow and dry condi-
tions, the snow in flowing avalanches gradually
becomes suspended. However, on slopes that ex-
ceed 30°, in cold, dry weather, a flowing ava-
lanche may assume the -characteristics of a
powder avalanche with considerably higher veloc-
ity and destructive potential. The determination
of flow height requires considerable experience.
According to Voellmy, the height of flow (h’) for
flowing avalanches is approximately the same as
the vertically measured fracture height of the
snow in the starting zone (h). In situations where
there is considerable new snow in the track, h’
should be increased to account for accretion of
avalanche mass.

In the flowing avalanche, the specific weight of
the flowing snow (v) is equal to the average spe-
cific weight of the natural snow cover (y,).

Mixed-Motion Avalanches.—Field observa-
tions indicate this is the most common type of
avalanche motion. The same equations should be
used for mixed-motion as for flowing avalanches.
Schaerer (1975a) concluded flow height just
above the runout zone was directly related to aver-
age depth of the debris. For example, h’ = 4 hp
for the dense flowing part of this type of ava-
lanche, where hp, is the average depth of the ava-
lanche debris in meters. In this case, the debris
was spread over a wide front with little variation
in depth. Earlier he had observed (Schaerer 1973)
the specific weight of the flowing snow in mixed-
motion avalanches to be approximately 30 per-
cent of the specific weight of the deposited snow.



Powder Avalanches.—Powder avalanches are
produced by cold, dry snow which is whirled up
into an aerosol as it travels downslope. Naturally
deposited snow in the channel can be completely
or partially carried along in the turbulent flow.
As discussed below, the amount of snow in the
avalanche track can have a significant effect on
the dynamics of powder avalanches.

Voellmy indicates that air entrainment of snow
particles is possible as long as the avalanche ve-
locity is greater than about twice the particle fall
velocity, which is in the neighborhood of 1 or 2
m/s. On slopes of more than about 30°, powder
avalanches can form from slabs or loosened snow
after the velocity exceeds 15 to 20 m/s.

For powder avalanches, the terminal velocity
conforms to eq. [2] with:

h’ = (yo/y)}h + h,) 9]
+1b
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where

h,= the height (in meters) of the natural layer
of snow lying in front of and under the ava-
lanche, and which is whirled up by the ava-
lanche.

Few observations of the flow height (h’) of true
powder avalanches are available, however.

With a densely packed or crusted snowpack, h,
in eq. [9] = 0. In many cases, h , = h if the natural
snow cover in the avalanche channel consists of
dry powder. Powder avalanches can form when
the specific weight of freshly deposited snow
cover is less than approximately 150 kg/m?.

Voellmy determined that at terminal velocity:

vy = % sin ¥ [10]

which can be considered as a first approximation
of the specific weight of the flowing snow.

Assuming that v,/v and u are negligible in eq.
[1], and substituting egs. [9] and [10] results in the
expression:

V2 =2g(h + ha) vova [11)

for a wide channel (h’ = R). Eq. [11] states that
“if the slope inclination permits a disintegration
of the snow, the velocity of powder avalanches is
actually not dependent upon the slope inclina-
tion . ..” (Voellmy 1955). This result has been val-
idated by field observations (fig. 1), and applies
only to high-speed powder avalanches.

Full-Depth Avalanches.—Avalanches of com-
pacted or wet or damp snow whose particles are
held together by the surface tension of the free
water content do not produce significant snow
dust clouds. In such avalanches, the movement

minimum value
for full-depth
avalanches

/,..-14-— U=k‘sin¢

Figure 1.—Velocity measurements on powder, flowing, and
full-depth avalanches, by Dr. M. Oeschlin, Canton For-
ester of Uri, Altdorf (adapted from Voellmy 1955).



causes densification of the snow rather than dis-
integration and suspension, which is characteris-
tic of powder avalanches. A full-depth avalanche
usually results, especially when wet snow is re-
leased, because the sliding snow usually works its
way through the underlying snow layer to the
ground. Considerable debris in the form of trees,
rocks, and earth is often carried along. A straight-
forward method for determining the flow height
of full-depth avalanches is not available. Accord-
ing to Voellmy (1955), the flow height, h’, can be
approximated by:

h' = 2.6h [12]

which compares with an estimate of h’ = 1.5t0 3
h p, where h pis the depth of the snow in the ava-
lanche debris, as proposed by Schaerer (1975a).
The maximum velocity of the full-depth ava-
lanche is calculated by egs. [1b] or [2] with v = ~,,.
The fundamental correctness of eq. [8] has been
validated by field studies, which indicate that the
square of the velocity is a function of sin y and h
{fig. 2). In citing early observations, Voellmy sug-
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Figure 2. —V? as a function of R(sin y -%cos ¥), where R is

the hydraulic radius. R is approximately equal to h’ (flow
depth) for avalanches on open slopes or gullies 10 h’ or
more in width. Plotted points were computed by
Schaerer (1975a) from observations at Rogers Pass,
British Columbia.

gests that, for ground avalanches, { = 500 and
= 0.075. However, recent work by Schaerer
(1975a), although based on limited data, indicates
that £ can be higher and that u varies with speed.
According to Schaerer, there is little difference
between the average friction coefficients of wet
and dry snow avalanches, even though the wet
avalanches are slower (fig. 2). He attributes the
low speed to the smaller flow depth rather than to
a higher friction coefficient.

Gradient Changes.—The theory and analysis of
gradually varied flow (Chow 1959) have been used
to compute avalanche profiles on complex slopes.
At gradient changes, Voellmy (1955) proposed
the approximate equation:

VailVyy = hln—l/h’n = (sin \l/n/Sin Y1) (18]
where

Vvn = the angle of the upper slope, and
¥ n-1= the angle of the lower slope.

Voellmy suggests that eq. [13] is valid for each
succeeding gradient change for the determination
of the basic flow height. Eq. [13] is also used to
compute the flow height in the runout zone where
V. is the gradient of the runout zone.

It should be noted that, for small values of ¥ ,,,
h, cannot exceed the velocity head, V?%2g.
Voellmy points out that, at a gradient change, the
transition distance required to reach normal
depth is less than the distance given by eq. [4] to
approach terminal velocity in a given reach.

- Velocity Distribution.—Voellmy has expressed
the velocity distribution by the following para-
bolic equation:

V' =V[4/3 - (z/h’)}] 14
where V" is the velocity at the depth, z, below the
surface of all but powder avalanches. For the case
of powder avalanches, the ordinate in eq. [14] is
measured above and below one-half of the flow
height. Tochon-Danguy and Hopfinger (1975) ob-
served the velocity distribution by laboratory ex-
periments. Their work verified the form of eq. [14]
with an associated backflow in the ambient air
(fig. 3). Equation [14] has a significant effect on
the thrust pressure of avalanches as discussed
later.



7777777 Hard packed snow
or ground

=z Powder snow cover

Figure 3.—Velocity distribution in a laboratory simulation
of a powder avalanche (modified from Tochon-Danguy
and Hopfinger 1975).

Avalanche Winds

The previous flow equations and field observa-
tions indicate that powder avalanches can reach
extremely high velocities (Voellmy 1955, Mar-
tinelli and Davidson 1966). This phenomenon has
generated conflicting opinions as to the possibil-
ity of a propagated shock wave associated with
high-velocity avalanches (Briukhanov et al.
1967). However, convincing arguments have been
presented which show that shock is not a signifi-
cant factor in avalanche dynamics (Voellmy 1955,
Mellor 1968, Shen and Roper 1970).

Mellor (1968) has assumed that the flow of air
around the avalanche front is incompressible and
irrotational. Accordingly, it is possible to draw a
flow net with streamlines and equipotential lines
as shown in figure 4. If it is assumed that ava-
lanche speed varies from 50 to 125 m/s, then Mel-
lor (1968) suggested that the dynamic pressure is
great enough

...to damage or destroy lighter structures
when air velocity, u,.exceeds about 0.5 ur
(avalanche front velocity) for the slower
powder avalanches and about 0.2 uy for the
fastest powder avalanches. These air veloci-
ties can be expected at about 1.25 h’ and 0.5
h’ ahead of the avalanche front, respectively,
where the flow height, h’, may be in the
range of 10 to 100 m for major powder ava-
lanches. Thus, we have an explanation for
the observation that structures sometimes

disintegrate before the avalanche itself
strikes them.

Mellor has also pointed out that air velocities,
gusting, and shear forces alongside large ava-
lanches can be destructively high due to the steep
lateral velocity gradients. He has argued that the
“bow wave’’ proposed in the Russian literature
(Briukhanov et al. 1967) cannot produce true
shocks and “it therefore seems unprofitable to
speculate further on shock-producing mechan-
isms until the existence of shocks has been
proven.”

Mellor attributes the travel of avalanche winds,
after an avalanche stops or has been deflected, to
the inertia of the moving airmass. The rushing air
will continue traveling in a straight line until it
has dissipated its kinetic energy by boundary
shear, frontal resistance, and diffusion. His equa-
tion for the deceleration of the air parcel is given
by:

-5 X 107%u,? = H*' du,,

dt
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Figure 4.—Approximate distribution of velocity and pres-
sure in air near ground level ahead of an avalanche (from
Mellor 1968).






CpAy V?

F D= 2g

where

Fp = thedrag force on the obstacle, in kg,

Cp = adimensionless drag coefficient (Albert-
son et al. 1960),

A = the projected cross-sectioned area, in m?,

ve = the effective specific weight of the air/
snow mixture, in kg/m?, and

v = the velocity of the air/snow mixture, in

m/s.

According to Mellor (1968) the effective specific

weight of the avalanche “fluid,” v., can be
computed by the equation:
Ya¥
Ye = Ys+ Ya- - -
I
where
va = the specific weight of the air (approx. 1.25
kg/m?),
vi = the specific weight of ice (approx. 917
kg/m?), and
vs = the specific weight of snow.

Aerodynamic loading produced by airborne
snow also causes lift forces on submerged objects.
The lift force can be calculated by the equation:

CrAvy.V?

F.= 2z

where C; is the coefficient of lift.

Damming and Pressure Effects

If it is assumed that frictional effects are negli-
gible in the short distance needed for the ava-
lanche to come to rest in the runout zone, then the
total energy expended can be determined from
the familiar Bernoulli Equation:

12

p, + p*

H=7 + dp/’y

[15]

V2
2z Jf
Po

= the height in meters above some
reference datum,

where
Z ’

Po + p*
f dp/y
'Po

= the pressure head, which is de-
pendent upon the compressibil-
ity of the snow above the refer-
ence pressure head, p,,

= the specific pressure at the point
being considered at a depth, z,
below the surface of the ava-
lanche, and

= the total energy head, in meters.

p* =z

H

When a powder avalanche runs out onto level
terrain (¢, — 0), egs. [2] and [9] show that v can
become extremely small and h’ extremely large.
Downstream from this point, the avalanche
rapidly loses its kinetic energy, which produces
an increase in pressure and an associated com-
pression of the snow to an extremely high specific
weight. It is assumed that ‘‘this dynamic elastic
compression is limited chiefly by the compressi-
bility of the air in the voids; and that the ice crys-
tal framework gives only slight compression;
while the compressibility of the ice itself is negli-
gible”’ (Voellmy 1955).

The air in the voids is not completely expelled
during compression. For flowing avalanches of
coarse-grained dry snow, the maximum specific
weight (ys) does not exceed approximately 600
kg/m?®, whereas for wet snow, y; can approach
1000 kg/m®. An average value of y; for flowing
avalanche is approximately 800 kg/m® (Voellmy
1955). Voellmy assumes that the compression of
air in the voids can be considered as an isothermal
thermodynamic process, since the heat developed
is immediately absorbed by the snow. Under this
dynamic overpressure, p 4 (greater than p, = 1
atmosphere), the specific weight of the snow is
given by: »

Ya =7o(l + pafpo) | [1 + (yoPa/v¢Po)] [16]

where |

va = the specific weight as a result of dynamic
compression by the pressure p 4 over atmo-
spheric pressure, p, = 10,000 kg/m?.



The average specific weight during compres-
sion is given by:

Ym = (yo+ 'Yd)/2

— Yot (vo/20(X +vo/vs)PalPo

- 1+ 'Yopty')’fpo) [

Voellmy states that the static compressibility
of snow depends on the magnitude and duration
of the pressure, the character of the snow, and de-
gree of metamorphism. He suggests that ‘“‘com-
pression of the air in the pores first brought about
by the pressure, is equalized during settlement of
the snow material. Then without altering the set-
tlement which has taken place, the air in the pores

‘escapes.”’
Hence,
Ymax = ['Yo + 'Yf(pd/po)]/(l + pd/po) [18]
where
Ymax =the maximum specific weight after

compression by the overpressure p,
above atmospheric pressure p,.

Rapid compression of snow can cause notice-
able heating of air in the pores. Voellmy notes
that the maximum value of the absolute tempera-
ture can be expressed as:

T="T, (1 +pa/po) * " [19]
in which
T = temperature after compression and
with no heat flow, °K,

To = initial temperature, °K, and
X =cp/c, = 1.4 (for AQ = 0).
where

cpand’ =the specific heat of air constant pres-

c, sure and constant volume respectively,
and
AQ =the amount of heat transfer in the sys-

tem.

On the average and for the pressures involved,
this process seldom heats the snow more than
0.5°C. The initial heating and subsequent cooling
of the air in the voids, however, contributes to
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metamorphism of the snow and results in surface
melting of the ice crystals and sudden refreezing.
This phenomenon accounts for the ‘‘freezing in”
of objects (and people) caught up in the ava-
lanche. According to Voellmy, the heat from fric-
tion and compression is given by:

H

W=(y—-vsd g7 [20]
where
W =K cal/m? and
H =the total energy head given by eq. [15].
If the temperature of the snow is below 0°C,
some of the heat given by eq. [20] will be used to
satisfy the energy deficit or ‘‘cold content’’ of the
snowpack, which must be brought up to 0°C be-
fore appreciable surface melting can take place.

Voellmy states that eq. [18] is the basic equa-
tion for computing the ‘““damming’’ height in the
runout zone, while eq. [17] is used in calculating
the dynamic pressure effects. He further states
that eq. [18] will yield a conservative estimate for
powder avalanches, since in reality specific
weights may be somewhat less due to deposition
of part of the snow by sedimentation.

Runout Distances

As the avalanche reaches the runout zone, the
diminishing  slope inclination causes the flow
height to increase according to eq. [13]. The ava-
lanche comes to rest according to eq. [15], when
the flow height plus the pressure head is equiva-
lent to the total energy head, H. The place where
the avalanche comes to rest is of primary concern
to man and his activities.

By assuming that the kinetic energy is trans-
formed into: (a) potential energy, (b) frictional
work, (c) flow work, and (d) particle resistance,
Voellmy developed the following equation for the
runout distance:

s = V*/[2g(u cos ¥, - tan ¥,) + Vig/th,, ] [21]
where
s =runout distance in meters measured from

the break in the gradient, and

h,, =h’ + V?[4g when the debris is piled into a
short, steep cone.



Velocity is assumed to diminish uniformly to
zero in the runout zone. Hence, the average veloc-
ity is V/2 and its kinetic energy is V?/4g.

Equation [21]is a simplistic approach that does
not explain the complex flow regime in the runout
zone. For example, the equation is sensitive to g,
¢, and h,,. Certainly, p and ¢ are different in the
runout zone than in the track, but we have no
good data on their runout zone values. Also, the
approximation of h’ + V?/4g for h,, is true only
when the debris is piled in a short, steep cone.

In spite of these problems, equation [21] is use-
ful for land use planning because it gives an esti-
mate of the extent of the avalanche. Different
workers use the equation in different ways. Some
European workers prefer to keep ¢ between 400
and 600 m/s? for all avalanches. In this case, u
must be adjusted according to conditions in the
track and runout zone to get reasonable results.
Other workers prefer to use h’ or something be-
tween h’ and h,, in place of h,,,, and often select a
different value for £ in the runout zone than that
used in the track. Mears (1976) emphasizes the
desirability of seeking field evidence of flow
height and avalanche damage so it can be used to
make an independent estimate of avalanche ve-
locity and impact forces.

The approach followed in Part II of this paper
is to use 5/V for y, select an average value of ¢ for
the entire track based on terrain and snow condi-
tions, use h,,, =h’ + V?%4g in the runout equation
[21], and use equation [13] to estimate velocity
and flow heights in the various parts of the path
based on track gradient.

In eq. [21], the slope, ¥, is an extremely sensi-

tive parameter which may be positive or nega-
tive. Hence, for an adverse gradient (Sommer-
halder 1966):
s = V?/[2g(u cos ¢, +tany,) + Vigfth,]  [21a]
Voellmy notes that if the term in parentheses in
the denominator of eq. [21] is = 0, the avalanche
comes to rest on the valley floor. If the term in
parentheses is < 0, the avalanche does not come
to rest in that section of the track or runout zone.
In this case:

sin ¥, = (1/2p) [(1 + 4p7)12 - 1]
for small values of V, or

tan v, = Vg [t(2h,g + V?) for p = 0.

In the above situation, Voellmy states that eq,
[21] for s is approximately equal to the transition
distance for uniform flow where the new flow
height is given by eq. [13]. Thus:

sw = (V3- V3) [2g(u cos ¥, - tan )

where
V, =velocity in a part of the track that is above
a more gently sloping part, and

V. =velocity in the more gently sloping part of
the track or runout zone.

For s, < 1, in subcritical flow, a ‘‘backwater”
curve can develop on the upper slope. If the flow
is supercritical, a sudden change in height or “hy-
draulic jump”’ can develop in the vicinity of the
change in gradient.

Damming Effects

When the avalanche loses its kinetic energy in
the runout zone, the snow theoretically is de-
posited in a conelike configuration with an as-
sumed maximum height of

h ar = h, + Ah
where
h, =flow height in that section of the track just
uphill from the runout zone, and

Ah =V?

2g

This dimension is called the ‘“‘damming height”
by Voellmy, and is expressed as: '

H' =h'[1+ (2y,V3 [gh’ymad"?
H' = (ym[Vmasx) (V3/2g + 1)

Because the height-of the deposited snow is de-
creased in the runout zone, by lateral expansion,

[22]
and

" eq. [22] will overestimate the damming height.5 If
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the maximum cross section of the deposition cone
is geometrically similar to the flow cross section

3The reader is cautioned that equation [22] can greatly
overestimate the height of deposition. In most cases, the
topography allows the snow to expand in a lateral direc
tion, thus distributing it across a much broader front than
assumed by equation [22]. Studies by Schaerer (1975a)
showed that debris deposited in the runout was less than
the flow height (h’) in those cases where topography al
lowed lateral spreading and uniform deposition.



of the avalanche channel, then Voellmy suggests
that:

H =h' [1 +(2 von)/gh’vmax]"’

which can result in damming heights approxi-
mately 30 percent less than computed by eq. [22].

Thrust Effects

Thrust effects are reviewed in some detail in
order to provide the engineer with an adequate
range of alternatives for design.

The specific thrust pressure is given by:

P=7mh’ +V¥2g) =y, H =1y, H [23]

where
Y ms Ymax, and H’ are given by equations [17], [18],
and [22], respectively.

The expression for H in equation [23] is given
by:

H=h'+(V2g)[1- (V./V)]  [23a]
where
V. = 0 = final velocity.
By combining the foregoing equations,

Voellmy developed the expression:
p =7y { [(a/2) + Hpofvs"* - /2 } [24]

where
q=Dpoly- (H/I2NL + vlvy)

The maximum possible thrust pressure is given
by the equation:

Pmax =7Ym(h" + Vz/g)

provided that the snow undergoes inelastic im-
pact onto the obstacle without overflowing,
damming up, or moving laterally around the ob-
stacle. Equation [25] results in a highly conserva-
tive estimate of avalanche impact. Perhaps a
more reasonable approximation is the specific
thrust pressure given by equation [24] since most

[25]

Figure 6.—Avalanche impact pressure on a wide, rigid ob-
stacle (Mellor 1968). The plotted points were calculated
by Gongadze (1954), assuming a constant value, ,, of
650 kg/m®. The parameter, v,, is the specific weight of the
flowing snow prior to encountering the obstacle.
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structures would probably not be required to ab-
sorb all of the kinetic energy of a given avalanche
because much of the snow would flow around the
ends or over the top of an obstacle. Equation [24]
is used in the case studies of Part I1.

It should be noted here that other investigators
have also studied avalanche impacts. For ex-
ample, Mellor (1968) developed the following
equation for the impact pressure imparted to an
obstacle:

Ap= ¥, o v’ (1 + N
Y= N g g Y= N1
where
u, =avalanche velocity, in m/s,
v, = specific weight of flowing snow while still
undisturbed, in kg/m?®, and
v.  =specific weight of the snow after encoun-

tering the obstacle, in kg/m?®.

Mellor (1968) suggested that errors in estimat-
ing v, up to 15 percent have no significant effect
on the calculation of Ap since v, is normally less
than 300 kg/m® and v, always exceeds 550 kg/m®.
Generally, v, will lie in the range of 550 to 750
kg/m®. Mellor suggested that 650 kg/m® is per-
haps a reasonable estimate for v,. Figure 6 was
taken from Mellor (1968) to show maximum
thrust pressures on an unyielding large obstacle
for various specific weights of flowing snow, as-
suming a constant value of 650 kg/m® for ..
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Other significant studies of avalanche impacts in-
clude those made by Furukawa (1957), Mat-
viyenko (1968), Gongadze (1954), and Shoda
(1966).

Schaerer (1973) has probably made the most
field observations of impact pressures, using load
cells mounted in the avalanche track. His ob-
served peak specific pressures produced by dense
flowing snow agree with pressures calculated by
the equation:

VZ
pmax = _EE 'Yu
where
V =the speed of the avalanche front, and

Y. =the specific weight of the deposited snow in
the runout zone.

Schaerer found that average pressures were ap-
proximately 30 percent of the peak due to varia-
tions in particle size and specific weight, which
caused extreme fluctuations in measured pres-
sures. Observed pressures varied from 2,447 to
44,346 kg/m? for eight events from 1970 to 1972.
Dense blocks of snow produced the series of
peaks for the avalanche in figure 7 (Schaerer
1973), whereas airborne snow caused the lower
pressures.

08 b e PEAK PRESSURE, p

Now
o
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»

PRESSURE, kNm2

—— - H|-AVERAGE
PRESSURE, p!

TIME, SECONDS

Figure 7.—Variation of avalanche impact pressure

(Schaerer 1973).

If the avalanche impinges upon a surface in-
clined at an angle 3 to the flow, then:

[26]

Voellmy points out that eq. [26] applies to the
specific resistance of an inclined surface (referred
to the projection in the flow direction), since this
equation agrees with observations more favor-
ably than “with the complicated results of the
flow theory.” From eq. [15] and eq. [25], the fol-
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lowing more general expression for the total
energy head results:

H=h'+ (V¥2g)[1 - (V..[V)*(1 - sin B)] [27]

which can be substituted into eqgs. [23] and [24] for
computing the specific thrust pressure.

The total force per unit length on a circular cyl-
inder of radius r is:

P = (n/2)(ry V¥2g) [28]

An obstacle of width b, in the path of an ava-
lanche of width B, causes a loss of energy given
by:

2
P= bhy ~~ = Bhiy/g)av)V
2g
where AV = Vb/2B

[29]

Suction Effects

Voellmy points out that suction effects result-
ing from powder avalanches are explainable as
eddy effects. Although avalanches entrain some
air, the velocity of incoming air seldom reaches 5
percent of the avalanche velocity. Suction pres-
sures are possible behind small obstacles com-
pletely overrun by powder avalanches moving at
high velocity. The maximum negative pressure is
given by:

Py =vaVi2g (301
where
P < 1/10 atmosphere.

Thrust and Uplift

Uplift and thrust are associated with damming,
and can load a structure in any direction. The
snow is deflected immediately on impact with 8
minimal effect on velocity and friction. Wide ava-
lanches colliding with large obstacles are dam-
med up in accordance with eq. [22] to the dam-
ming height Hev /Y max. The vertical velocity at
the height h* is given by:

u = [2g(H = h#)]2 31



The specific upward pressure on projecting sur-
faces is:

Pv = Ymax’/2g [32]
where Yma, is determined from eq [18]. The unit

uplift force on vertical wall surfaces is given by
the equation:

R, =pu [33]
where
R, =the uplift per square meter of wall surface,
and
b =Ymax/1000 t0 7,,4,/2000, according to
Voellmy.

Voellmy points out that eqs. [32] and [33] are im-
portant in that “the vertical forces cause much of
the severe destruction since most structures in
avalanche-prone areas are not designed to with-
stand uplift.”

In terrain that descends in the direction of flow,
a downward component of thrust and friction
forces can occur. Voellmy suggests that total dy-
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namic thrust per meter of width on a horizontal
roof overrun by an avalanche is:

Py =+h’ (h'/2 + V?¥g) tan y/2 [34]
The pressure distribution on the roof is such that
neither the specific damming pressure (eq. 26)
nor the static damming pressure at the level
being considered is exceeded. In addition, when a
structure is overrun, the weight of the snow
(yh’ ,) as well as the frictional forces caused by
the moving snow (uyh’,) should also be con-
sidered.

Debris Entrained in Avalanches

In addition to impact loadings from the snow it-
self, the dynamic effects of debris such as rocks,
trees, and ice fragments entrained in avalanches
should also be considered. Avalanches will pick
up debris as soon as the thrust force, including
uplift, renders this material unstable. Modes of
transport can include saltation or sliding. The
work expended by the avalanche in entrainment
of debris is negligible for all practical purposes.
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PART II. FIELD VERIFICATION

The equations summarized in Part I are based
on technically sound engineering principles. With
careful judgment, they can be used to provide a
logical basis for evaluating avalanche hazards.

Even though more field data are needed to im-

prove the equations, enough information has been.

collected to provide examples that can be used to
show how to apply several of the equations in
Part I. Data were obtained from Frutiger (1964),
Gallagher (1967, Williams (1975), and field obser-
vations.

Twelve avalanche paths in Colorado were se-
lected for study. Although the data are limited,
they constitute a representative sample of ava-
lanche problems pertinent to land use. We did not
attempt to completely .analyze the avalanches,
nor to evaluate them according to a detailed fre-
quency classification. '

Our objective in this part of the report was to
utilize as much field data as possible to test the
suitability of the primary equations summarized

Avalanches in Colorado
included in case studies

Dam

Jones Brothers No. 5
Stanley

Seven Sisters No. 3
Seven Sisters No. 7
Little Professor
Pallavicini

Timber Falls

Parry Peak—Gordon Gulch
Hematite Guich
Battleship
Ironton Park

Glenwood
Springs

—_ ok
N2 OCOONOOBRWN

Q  Grand Junction

Montrose &

Durango

Kremmling Q

Twin Lakes

Gunnison
O

in Part I. It should be emphasized that a more
comprehensive engineering study, including a
careful frequency analysis of avalanche hazards,
should be made prior to any final determination
of runout distances, impact forces, and other per-
tinent engineering data.

The 12 avalanche paths analyzed in Part II are
discussed in terms of the avalanche classification
system used by Frutiger (1964), which designates
size as small (starting zone less than 7 acres),
medium (starting zone 7 to 30 acres), or large
(starting zone more than 30 acres). It also desig-
nates the frequency with which the avalanche
runs to the highway as frequent (into the road one
or more times per winter), occasional (into road
once each 8 to 6 years), or erratic (into the road no
more than once each 7 to 10 years). The frequency
classifications used in the following sections are
based on short periods of record, and may be
modified as more information accumulates.

Idaho
Springs
O

Denver

. Sedalia