

REPORT GEOTECHNICAL STUDY AND SLOPE STABILITY ANALYSIS PROPOSED WASATCH ROCK DEVELOPMENT 6695 WASATCH BOULEVARD COTTONWOOD HEIGHTS, UTAH

May 13, 2020

Job No. 528-005-20

Prepared for:

Rockworth Companies 4655 South 2300 East, Suite 205 Holladay, Utah 84117

Prepared by:

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123 Tel: 801-327-9600 Fax: 801-327-9601 www.gordongeotech.com

May 13, 2020 Job No. 528-005-20

Rockworth Companies 4655 South 2300 East, Suite 205 Holladay, Utah 84117

Attention: Mr. Josh Cowley

Ladies and Gentlemen:

Re: Report Geotechnical Study and Slope Stability Analysis Proposed Wasatch Rock Development 6695 Wasatch Boulevard Cottonwood Heights, Utah

1. INTRODUCTION

1.1 GENERAL

This report presents the results of our geotechnical study and slope stability analysis performed at the site of the proposed Wasatch Rock development which is located at 6695 Wasatch Boulevard in Cottonwood Heights, Utah. The general location of the site with respect to major topographic features and existing facilities, as of 1998, is presented on Figure 1, Vicinity Map. A detailed location of the site showing existing roadways and surrounding facilities, on an air photograph base, is presented on Figure 2, Area Map. The locations and alignments of photographs taken of the site during the field portion of study are also shown on Figure 2. A more detailed layout of the site showing the existing topography and proposed structure locations based on the conceptual site plan by McNeil Engineering dated April 24, 2020 is presented on Figure 3, Site Plan. The locations of the exploration test pits and borings excavated in conjunction with this study as well as a previous study are also presented on Figure 3.

An updated Geologic Hazards Evaluation was performed in conjunction with this geotechnical study and slope stability analysis and is included with Appendix A of this report. The locations of the fault trenches are shown within the Geologic Hazards report.

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123 Tel: 801-327-9600 Fax: 801-327-9601 www.gordongeotech.com

1.2 BACKGROUND

Engineers at Gordon Geotechnical Engineering, Inc. (G^2) previously completed a geotechnical study for the site summarized in letters dated September 11, 2009¹ and February 3, 2012². In concurrence with these studies, a surface fault rupture hazard study was performed for the site dated June 10, 2009³. G^2 has also reviewed a previous geotechnical study for the site, by others, dated July 29, 2016⁴.

This report also incorporates data collected by G^2 in 2018 while investigating potential sources of fill material for Rockworth Companies. The logs of test pits and laboratory data was never summarized in a report. The conclusions were transmitted verbally to the client.

1.3 OBJECTIVES AND SCOPE

The objectives and scope of our study were planned in discussions between Mr. Josh Cowley of Rockworth Companies and Mr. Patrick Emery of G².

In general, the objectives of this study were to:

- 1. Accurately define and evaluate the general subsurface soil and groundwater conditions across the site.
- 2. Provide foundation, earthwork, floor slab, pavement, drainage, slope stability, and geoseismic recommendations and parameters to be utilized in the design and construction of the proposed facilities.

In accomplishing these objectives, our scope has included the following:

1. A field program consisting of the excavating and drilling, logging, and sampling of eight test pits and three borings, respectively.

¹ "Summary Letter, Geotechnical/Geoseismic Study, A.J. Dean Property, East Side of Wasatch Boulevard at Approximately 6700 South, Cottonwood Heights, Salt Lake County, Utah," GSH Job No. 0883-001-09.

² "Supplemental Discussions and Recommendations, Earthwork and Initial Aspects of Proposed Commercial Development, A.J. Dean Property, East Side of Wasatch Boulevard at Approximately 6700 South, Cottonwood Heights, Salt Lake County, Utah," G² Job No. 028-001-12.

³ "Report, Surface Fault Rupture Hazard Study, A.J. Dean Property, East Side of Wasatch Boulevard at Approximately 6700 South, Cottonwood Heights, Salt Lake County, Utah," Western Geologic Job No. 2381.

⁴ "Geotechnical Study, Liberty Mountain, 6695 South Wasatch Boulevard, Salt Lake City, Utah", GSH Job No.: 0283-015-16, Dated July 29, 2016.

- 2. ReMi Survey to develop a shear wave velocity profile to 100 feet for IBC Site Class determination.
- 3. A laboratory testing program.
- 4. An office program consisting of the correlation of available data, engineering analyses, and the preparation of this summary report.

1.4 AUTHORIZATION

Authorization was provided by returning a signed copy of our Professional Services Agreement No. 20-0205-rev1 dated February 13, 2020.

1.5 **PROFESSIONAL STATEMENTS**

Supporting data upon which our recommendations are based are presented in subsequent sections of this report. Recommendations presented herein are governed by the physical properties of the soils encountered in the exploration borings, test pits, and trenches, measured and projected groundwater conditions, and the layout and design data discussed in Section 2., Proposed Construction, of this report. If subsurface conditions other than those described in this report are encountered and/or if design and layout changes are implemented, G² must be informed so that our recommendations can be reviewed and amended, if necessary.

Our professional services have been performed, our findings developed, and our recommendations prepared in accordance with generally accepted engineering principles and practices in this area at this time.

2. PROPOSED CONSTRUCTION

Development plans for the site have changed since the previous geotechnical reports for the site. Development at the site is complicated by the existence of several fault lines and a buried aqueduct which render significant portions of the site as "un-buildable" for habitable structures. These fault lines and buried aqueduct have been considered from the onset when designing the latest development plans. The proposed structures have been strategically located in the "buildable" areas defined in the surface fault rupture hazard report.

Currently, a hotel, an apartment, condominium, senior living center, three mixed-use pads, and three retail pads are planned for the site. Additionally, Wasatch Boulevard along the western boundary of the site will be re-aligned to bi-sect the site in a generally north-south direction.

Apartment Structure

An apartment structure is planned for the eastern portion of the site. The proposed apartment structure will consist of a two-level reinforced concrete parking structure with four- to five-levels

of wood-frame apartments on top. The lowest level of the parking structure will be established at an elevation of 4,480 feet. Due to the extremely variable topography in the area, creating a pad for this structure will require cuts on the order of 15 to 20 feet and fills on the order of 15 to 20 feet.

Maximum column and wall loads for the apartment structure are anticipated to be on the order of 120 to 500 kips and 5 to 15 kips per lineal foot, respectively.

Condominium Structure

A condominium structure is planned for the north side of the site. The proposed condominium structure will consist of a 5-level reinforced concrete parking structure with 10-levels of steel-frame residential space on top. The lowest level of the parking structure will be established at an elevation of 4,893.2 feet. The mass excavation for this structure will need to extend to depths ranging from 25 to 50 feet below existing grades. The final site grading around the structure will require fills on the order of 10 to 15 feet.

Maximum column and wall loads for the condominium structure are anticipated to be very large, on the order of 1,000 to 1,500 kips and 15 to 30 kips per lineal foot, respectively. Detailed structural loads will be needed to finalize geotechnical recommendations for this structure.

Due the high loads, we anticipate that the condominium may be supported upon a continuous mat. If an average real uniform load of 145 pounds per square foot (bearing load plus frequently applied load) is imposed by each floor, an average uniform load of 75 pounds per square foot is imposed by the roof and the structure is supported upon a three and one-half foot thick mat, the pressure imposed by the base of the mat will be on the order of 2,500 to 2,800 pounds per square foot.

Senior Living Center

A senior living center is planned for the southeast corner of the site. The proposed senior living structure will consist of a one-level reinforced concrete parking with two- to three-levels of wood-frame residential space on top. The lowest level of the parking structure will be established at an elevation of 4,853 feet. Creating a pad at the bottom of footing elevation for this structure will require fills on the order of 1 to 15 feet.

Maximum column and wall loads for the senior living structure are anticipated to be on the order of 120 to 250 kips and 5 to 10 kips per lineal foot, respectively.

<u>Hotel</u>

A hotel is planned for the northwest corner of the site. The proposed hotel structure will consist of four-levels of wood-framing established slab-on-grade. The lowest level of the parking structure will be established at an elevation of 4,843 feet. The pad for this structure will be established near existing grade; however, the contour maps indicate fills up to 10 or 15 feet in

height may need to be removed from the area. It should be noted that the existing topography has likely changed due to the gravel pit operations.

Maximum column and wall loads for the hotel structure are anticipated to be on the order of 90 to 180 kips and 5 to 10 kips per lineal foot, respectively.

Mixed-Use and Retail Structures

Mixed-use structures are planned for Pads B and C and along the western portion of the site. Retail structures are planned for Pads A, D, and E in the central portion of the site. The mixeduse structures will be three levels in height and the retail structures will be one level in height. These structures will be of wood-frame construction established slab-on-grade. Generally these pads will require cuts and fills on the order of 5 to 10 feet.

Maximum column and wall loads for the mixed-use structures are anticipated to be on the order of 90 to 180 kips and 5 to 7 kips per lineal foot, respectively.

Final site grading will require cuts up to 30 feet in the northern portions of the site and fills on the order of 5 to 10 feet in the southwest portion of the site. Fills up to 35 feet in height are planned for the eastern portion of the site and will buttress the existing gravel pit cut slope. Final site grading slopes are generally not anticipated to not exceed 50 percent or 2.0:1.0 (H:V) with localized areas of up to 56 percent or 1.8:1.0 (H:V).

3. INVESTIGATIONS

3.1 FIELD PROGRAM

In order to define and evaluate the subsurface soil and groundwater conditions across the site, during this study, 3 borings were drilled to depths of 41 to 101 feet below existing grade utilizing a truck-mounted drill rig equipped ODEX percussion drilling methods. Additionally, 8 test pits were excavated to depths of 7 to 23 feet below existing grade. One trench approximately 210 feet in length and 5 to 15 feet below existing grade was excavated for the updated Geologic Hazards Evaluation. The approximate locations of the borings and test pits are presented on Figure 3. Additionally, the locations of borings drilled in conjunction with previous studies are also shown on Figure 3.

The field portion of our study was under the direct control and continual supervision of an experienced member of our geotechnical staff. During the course of the excavation operations, a continuous log of the subsurface conditions encountered was maintained. In addition, samples of the typical soils encountered were obtained for subsequent laboratory testing and examination. The soils were classified in the field based upon visual and textural examination. These classifications have been supplemented by subsequent inspection and testing in our laboratory. Detailed graphical representation of the subsurface conditions encountered is

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

presented on Figures 4A through 4K, Log of Borings and Test Pits. Soils were classified in accordance with the nomenclature described on Figure 5, Unified Soil Classification System.

A 3.25-inch outside diameter, 2.42-inch inside diameter drive sampler (Dames & Moore) was utilized in the majority of the subsurface sampling at the site. Additionally, a 2.0-inch outside diameter, 1.38-inch inside diameter drive sampler (SPT) was utilized at select locations and depths. The blow counts recorded on the boring logs were those required to drive the sampler 12 inches with a 140-pound hammer dropping 30 inches.

Disturbed bag samples were collected from the soils brought up by the backhoe bucket. Additionally, relatively undisturbed samples of the finer-grained sand type soils encountered in the continuous trench excavated in conjunction with the geologic hazards study were obtained using 2.42-inch inside diameter hand sampling equipment.

Following completion of excavating and logging, each test pit and continuous trench was backfilled. Although an effort was made to compact the backfill with the backhoe, backfill was not placed in uniform lifts and compacted to a specific density. Consequently, settlement of the backfill with time is likely to occur.

3.2 ReMi SURVEY

3.2.1 General

Refraction microtremor (ReMi) is a geophysical survey developed by Dr. John N. Louie and explained in detail in his document "Faster, Better: Shear-Wave Velocity to 100 Meters Depth from Microtremor Arrays"⁵.

One survey line, measuring 88 meters (288.7 feet) in length, running approximately east-to-west in the central portion of the site was performed at the site. An array of 12, 4.5 hertz geophones spaced at 8-meter intervals was attached to the line. The geophones, attached to metal spikes, were firmly planted in the surficial soils and connected, via the line, to a DAQ 3 - 24 Channel Seismograph. This system was used to digitally record the seismic wave vibrations at each geophone position with 32-bit analog to digital conversion

3.2.2 Data Evaluation

Following the acquisition of the data, using *SeisOpt ReMi* software, a wavefield transformation of the records reveals the shear-wave dispersion curve (Appendix B). This dispersion curve plots frequency, in hertz, against slowness, in seconds per meter. The shear-wave dispersion

5

Louie, J.N., 2001, "Faster, Better: Shear-Wave Velocity to 100 Meters Depth from Refraction Microtremor Arrays", Bulletin of Seismological Society of America, Vol 91, 347-364.

curve from the wavefield transformation is then manually picked and the picks modeled to determine the subsurface shear-wave velocity profile (see Appendix B).

The results of the tests are tabulated below:

Line	V _{s100} (ft/s)
1	1549.0

3.3 LABORATORY TESTING

3.3.1 General

In order to provide data necessary for our engineering analyses, a laboratory testing program was performed. The program included moisture and density, partial gradation, Atterberg limits, compaction, consolidation, and direct shear tests. The following paragraphs describe the tests and summarize the test data.

3.3.2 Moisture and Density Tests

To aid in classifying the soils and to help correlate other test data, moisture and density tests were performed on selected undisturbed samples. The results of these tests are presented on the boring and test pit logs, Figures 4A through 4K.

3.3.3 Partial Gradation Test

To aid in classifying the soils and to provide general index parameters, a partial gradation test was performed upon representative samples of potential sources of fill as well as the soils encountered in the exploration borings. The results of the tests are tabulated on the following page.

Potential Fill Sources

Toot Dit/	Donth		Pe	rcent Pa	ssing (Sieve Si	ze)		Soil
Test Pit/ Sample No.	Depth (feet)	(1 1/2")	(3/4")	(1/2")	(#4)	(#10)	(#40)	(#200)	Soil Classification
									Sandy CL (Red
TP-3	11.0	-	-	-	96.7	95.2	91.5	67.8	Clay)
TP-5	2.0	-	_	-	_	85.7	81.6	59.3	CL/SC (Washout Fines)
	2.0					00.7	01.0	00.0	CL (Washout
TP-5	4.0	-	-	-	-	97.7	96.5	70.6	Fines)
TP-5	9.0	-	-	-	-	10.4	5.5	4.6	SP ("Squeegee")
									Sandy CL
TP-5	BULK	-	-	-	-	88.3	85.3	65.3	(Washout Fines)
TP-6	3.0	_	_	-	_	95.7	95.1	92.7	CL (Washout Fines)
11-0	5.0	-	-	-	-	95.7	95.1	92.1	Sandy CL
TP-6	6.0	-	-	-	-	94.4	93.9	69.3	(Washout Fines)
TP-6	12.0	-	-	-	-	15.2	7.5	4.9	SP ("Squeegee")
									Sandy CL
TP-6	BULK	-	-	-	-	89.5	87.7	68.7	(Washout Fines)
TD 7	5.0					00.4	04.4	00.7	Sandy CL
TP-7	5.0	-	-	-	-	92.4	91.1	62.7	(Washout Fines)
TP-7						98.2	06.6	67.0	Sandy CL
IP-7	BULK	-	-	-	-	90.2	96.6	67.9	(Washout Fines) CL/SC (Washout
TP-8	2.0	-	_	-	_	75.5	70.4	51.9	Fines)
	2.0					1010		0110	CL/SC (Washout
TP-8	6.0	-	-	-	-	82.9	76.5	53.7	Fines)
Shelby									,
Stockpile									SP/GP (Bank
(1A)	-	87.6	58.7	47.2	38.5	32.7	18.9	3.3	Run)
Shelby									
Stockpile		70 7	70 7	70 7			50 7	47.0	
(1B)	-	73.7	73.7	72.7	71.1	69.0	52.7	17.2	SM (Bank Run)
Shelby Steel/mile									
Stockpile (Composite)				89.9	82.3	76.0	48.5	15.3	SM (Bank Run)
(Composite)	-	-	-	09.9	02.3	70.0	40.0	10.0	

Borings (This Study)

Boring No.	Depth (feet)	Percent Passing No. 4 Sieve	Percent Passing No. 200 Sieve	Soil Classification
B-1	7.5	-	35.2	SM
B-1	10.0	78.2	3.0	SP
B-1	30.0	60.3	10.7	SP-SM
B-1	40.0	75.2	18.5	SM
B-2	2.5	34.5	9.8	GP-GM
B-2	10.0	34.2	4.6	GP
B-2	15.0	41.5	10.2	GP-GM
B-2	25.0	39.0	5.9	GP-GM
B-2	45.0	75.2	66.3	CL
B-3	36.5	28.5	3.9	GP
B-3	55.0	48.2	4.6	SP/GP
B-3	60.0	44.7	6.5	GP-GM
B-3	80.0	74.9	18.2	SM
B-3	85.0	49.0	10.4	GP-GM
B-3	95.0	3.2	0.9	SP

3.3.4 Atterberg Limits Tests

An Atterberg limits test was performed upon representative samples of the potential fill sources and soils encountered in the exploration borings. Results are tabulated on the following page.

Potential Fill Sources

Test Pit No.	Depth (feet)	Liquid Limit (percent)	Plastic Limit (percent)	Plasticity Index (percent)	Unified Soils Classification
TP-3	11.0	24	15	9	CL (Red Clay)
					CL (Washout
TP-5	BULK	30	20	10	Fines)

Borings (This Study)

Boring	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Unified Soils
No.	(feet)	(percent)	(percent)	(percent)	Classification
B-2	45.0	35	21	14	CL

3.3.5 Compaction Tests

To determine the compaction properties of the potential fill sources, a Modified Proctor compaction test was performed on several bulk samples. Results of the tests are tabulated below:

Test Pit/Sample No.	Depth (feet)	Soil Classification	Maximum Dry Density (pcf)	Optimum Moisture Content (percent)
1A and 1B				
Composite	-	SM	126.8	6.5
Washout				
Fines				
Composite	-	CL	124.3	10.8
Red Clay				
Composite	-	CL	123.3	10.7

3.3.6 Consolidation Tests

To determine the load deformation and consolidation characteristics of the typical fine-grained soils encountered for our settlement analysis, a consolidation test was performed on one relatively undisturbed sample obtained during our field program. A consolidation test was also run a sample of laboratory compacted washout fines.

The test results are tabulated on the following page.

Boring/ Sample No.	Depth (feet)	Soil Classification	Dry Density (pcf)	Moisture Content (percent)	Preconsolidation Pressure (psf)
B-1	20.0	CL	97.8	24.3	2,400*
Washout Fines					
Composite**	-	CL	117.7	11.1	13,000*

* Determined by the Casagrande Graphical Method

** Recompacted to 95 percent of the Modified Proctor Density

Data available indicates that the fine-grained cohesive soils are lightly to moderately overconsolidated. When loaded below the preconsolidation pressure, the soils will exhibit moderate compressibility characteristics. Detailed results of the tests are maintained within our files and can be transmitted to you, at your request.

3.3.7 Direct Shear Tests

Direct shear tests were performed on representative laboratory compacted samples of potential fill sources as well as undisturbed samples of the soils encountered in the exploration borings. The results of the direct shear test are tabulated below:

Boring/ Sample No.	Depth (feet)	Soil Classification	Friction Angle	Cohesion (psf)
Shelby				
Stockpile				(00
(Composite)	-	SM	38	499
Washout Fines				
(Composite)	-	CL	33	356
B-2	35.0	CL	27	166
B-2	40.0	SM	35	524
B-3	75.0	SM	33	0

A detailed report of the direct shear test results is provided in Appendix C.

4. SITE CONDITIONS

4.1 SURFACE

The site consists of a 21.56-acre parcel located on the southeast corner of the intersection of Wasatch Boulevard and 6200 South Street. The site has been used as a gravel pit since the 1960's. Significant cuts for mining of sand and gravel have occurred over the years as the operation progressed into the hillside. Additionally significant amounts of waste material (washout fines, concrete washout, and "squeegee" material) have been placed around the site. A severely over-steeped slope is present on the eastern portion of the site due to the significant cuts in the area.

Several at-grade structures associated with the gravel pit operations as well as stockpiles of material are present on the site. Vegetation is limited to a sparse growth of ankle- to knee-high weeds and grasses and occasional small trees.

The topography across the site is quite variable and has changed over the years due to the ongoing gravel pit operations. The overall topography in the area generally slopes down to the southwest. Overall total topographic relief across the site is on the order of 90 to 160 feet.

Representative photographs of the site area are shown on Figure 6, Photographs.

4.2 SUBSURFACE SOIL

Subsurface soil conditions encountered in the exploration borings, test pits, and trenches were relatively consistent. The dominant soil type at the site is fine to coarse sands and gravels with varying amounts of silt. The sand and gravel soils are generally dense to very dense, slightly moist, light brown to tan in color, and will exhibit high strength and low compressibility characteristics.

The sand and gravel sequence contains interbedded layers of thinly layered silty fine sand encountered within Boring B-1 between 33.5 and 41.0 feet below existing grade, Boring B-2 between 38.0 and 43.0 feet below existing grade, and Boring B-3 between 74.0 and 77.5 feet below existing grade at the boring locations. The silty sand soils are medium dense to dense, slightly moist to saturated, light brown to tan in color, and will exhibit moderate strength and compressibility characteristics.

The sand and gravel sequence also contains interbedded layers of silty clay and fine sandy clay encountered within Boring B-1 between 17.5 and 24.5 feet below existing grade, and Boring B-2 between 32.5 and 38.0 feet, and between 43.0 and 51.5 feet below existing grade at the boring locations. The silty/sandy clay soils are stiff to very stiff, moist to saturated, tan to gray in color, and will exhibit moderate strength and compressibility characteristics.

Job No. 528-005-20
Geotechnical Study and Slope Stability Analysis
May 13, 2020

The lines designating the interface between soil types on the borings and test pit logs generally represent approximate boundaries. In-situ, the transition between soil types may be gradual.

4.3 GROUNDWATER

Immediately following drilling operations, groundwater was measured in the exploration borings. On March 25, 2020 we returned to the site and measured the groundwater within the piezometers placed in the borings. Groundwater measurements are tabulated below:

	Groundwater Depth (feet)				
Boring No.	March 2, 2020	March 13, 2020	March 25, 2020		
B-1	32.5*		36.0		
B-2	29.0*		30.8		
B-3		Not Encountered	Not Encountered		

* Measured at the end of drilling operations, not yet stabilized.

Seasonal and longer-term groundwater fluctuations on the order of one to two feet are projected, with the highest seasonal levels generally occurring during the late spring and early summer months.

5. DISCUSSIONS AND RECOMMENDATIONS

5.1 SUMMARY OF FINDINGS

The results of our geotechnical and geologic hazard study indicate that the site is suitable for the proposed development provided the recommendations in this report are followed:

The most significant geotechnical aspects of the site are:

1. Active Normal Faulting observed in fault study trenches.

Several splays of the Wasatch Fault were encountered in the fault study trenches. The building layout has been designed to account for the setback recommendations outlined in the geologic hazard report for the site. The geologic hazard report is included in Appendix A

2. Stability of the proposed slopes.

The results of the slope stability analysis indicate that the proposed slopes will meet the required factors of safety provided that the following recommendations are followed:

- The condominium structure at Section A-A' incorporates a deep cut for below-grade parking. A structural element must extend a minimum of 15 feet below the bottom of footings to assure an adequate factor of safety. This may consist of deep foundations, soil improvement, or a permanent shoring solution such as soil nails.
- Section B-B' indicates that concrete washout material may remain in place provided that any loose or raveling material is removed and the concrete washout is competent.
- The slope at Section C-C' is the steepest with an average grade of approximately 53 percent. The stability analysis indicates that compacted bank run sand and gravel fill material will be required for slopes that exceed 50 percent or 2:1 (H:V).
- Compacted washout fines may be utilized for slopes that do not exceed 50 percent or 2:1 (H:V).
- It is recommended that all fill slopes on the northern and eastern portions of the site incorporate subdrains near the toe of the existing slopes to intercept seepage from up-gradient runoff.
- Fill slopes must be benched into the existing slope as fill placement progresses to avoid a planar interface at the base of the fill. Individual benches may be on the order of five feet in height.
- Fill materials must be compacted to a minimum of 90 percent of the Modified Proctor dry density.
- 3. Non-engineered fills encountered to depths of 2.0 to 6.5 feet in the majority of the building areas and up to 15.0 feet in the area of the proposed condominium.

Non-engineered fills are not suitable for building support and must be completely removed from below the building footprint and rigid pavement areas.

4. Deep cuts required for the condominium structure.

The condominium structure will require cuts up to 50 feet in depth. Due to the adjacent roadways this will likely require shoring to maintain stability of the sideslopes. Temporary shoring may potentially consist of a soil nail wall provided that permission is granted to extend nails below adjacent properties (if needed). As an alternative, a permanent shoring wall consisting of a solider pile wall with tiebacks may be considered. A permanent shoring wall would have the added benefit of significantly reducing the lateral pressures on the below-grade walls. Additionally, our slope stability analysis indicates that at Cross-section A-A' a structural element must extend a minimum of 15 feet below the bottom of footings to force the potential failure plane deeper and assure an adequate factor of safety. This requirement should be accounted for in the shoring design.

5. Potential for "perched" groundwater conditions and groundwater seepage through the hillside.

Due to the potential for perched groundwater conditions, subdrains are behind all below-grade structural elements.

Detailed discussions pertaining to slope stability, earthwork, foundations, floor slabs, lateral resistance, pavement, and the geoseismic setting of the site are discussed in the following sections.

5.2 SLOPE STABILITY

5.2.1 General

In order to evaluate the stability of the proposed slopes at the site, a slope stability analysis was performed with the computer program, SLIDE (Version 6.0), utilizing the modified Bishops method for a circular failure surfaces. The analysis included both long-term static and seismic conditions of the proposed site grading and development.

5.2.2 Geometry

The geometry for the slope stability models was developed from the geologic cross-sections provided with the concurrent Geologic Hazards Evaluation report. Topography was obtained from 2013 lidar data with 0.5-meter resolution. Three cross-sections (A-A', B-B', and C-C') for slope stability analysis were selected based on the locations of the proposed developments and the most adverse topographic and geologic conditions.

The locations and elevations of the proposed structures were obtained from the site grading plans by McNeil Engineering. The topography from the 2013 LiDAR data set was modified to show the proposed cuts for the structures and proposed site grading fills.

The subsurface profile was developed utilizing stratigraphic information obtained from numerous borings, test pits, and trenches.

5.2.3 Soil Strength

The soil parameters were selected for analysis based upon direct shear test results performed on undisturbed and laboratory recompacted samples. Strength parameters for the more coarse-grained granular soils were selected based upon our experience with similar soils in the area. These coarse-grained sand and gravel soils are projected to exhibit relatively high strengths based on their performance history in gravel pit cut slopes which have been known to stand near-vertical for extended periods of time. The cohesive characteristic of these granular soils may be explained by a slight cementation and interlocking of particles. Parameters of concrete washout are estimated as a hybrid between high strength soil and low-grade concrete.

The following table summarizes the soil strength values utilized for static and seismic conditions:

Soil Type	Soil Parameter	Parameter Units
	Cohesion	200 (psf)
Lacustrine Sand and Gravel	Friction Angle	36
Glavei	Unit Weight	120 (pcf)
Lemineted Cilty Fine	Cohesion	0 (psf)
Laminated Silty Fine Sand Beds	Friction Angle	33
Sand Deus	Unit Weight	120 (pcf)
	Cohesion	150 (psf)
Lacustrine Fines	Friction Angle	27
	Unit Weight	120 (pcf)
Site Grading Fill	Cohesion	350 (psf)
(Compacted Washout	Friction Angle	33
Fines)	Unit Weight	120 (pcf)
Site Grading Fill	Cohesion	250 (psf)
(Compacted Sand and	Friction Angle	38
Gravel)	Unit Weight	120 (pcf)
	Cohesion	500 (psf)
Concrete Washout	Friction Angle	37
	Unit Weight	130 (pcf)

5.2.4 Analysis Results

The results of the stability analyses are tabulated below:

Profile	Condition	Seismic Coefficient	Lowest Factor of Safety	Recommended Minimum Allowable Factor of Safety
A-A'	Static		1.70	1.5
A-A'	Seismic	0.3*	1.00	1.0
B-B'	Static		2.04	1.5
B-B'	Seismic	0.3*	1.14	1.0
C-C'	Static		1.90	1.5
C-C'	Seismic	0.3*	1.07	1.0

* Approximately one-half of the geometric mean PGA.

The results of the slope stability analysis indicate that the proposed slopes will meet the required factors of safety provided that the following recommendations are followed:

- The condominium structure at Section A-A' incorporates a deep cut for belowgrade parking. A structural element must extend a minimum of 15 feet below the bottom of footings to assure an adequate factor of safety. This may consist of deep foundations, soil improvement, or a permanent shoring solution such as soil nails.
- Section B-B' indicates that concrete washout material may remain in place provided that any loose or raveling material is removed and the concrete washout is competent.
- The slope at Section C-C' is the steepest with an average grade of approximately 53 percent. The stability analysis indicates that compacted bank-run sand and gravel fill material will be required for slopes that exceed 50 percent or 2:1 (H:V).
- Compacted washout fines may be utilized for slopes that do not exceed 50 percent or 2:1 (H:V).

- It is recommended that all fill slopes on the northern and eastern portions of the site incorporate subdrains near the toe of the existing slopes to intercept seepage from up-gradient runoff.
- Fill slopes must be benched into the existing slope as fill placement progresses to avoid a planar interface at the base of the fill. Individual benches may be on the order of five feet in height.
- Fill materials must be compacted to a minimum of 90 percent of the Modified Proctor dry density.

5.2.5 Surficial Stability Analysis Results

Slope stability analysis results are presented in graphical form and have been enclosed in Appendix D, Slope Stability Analysis Results.

1. Surficial Stability Analysis Results

Considering the long-term performance the proposed slopes, and to account for periods of high snow melt and rainfall, a surficial stability analysis of the proposed slopes was performed. The analysis assumes an infinite slope with seepage parallel to the slope. The assumed depth of saturation is four feet.

For slopes with an average grade up to 53 percent constructed of bank-run sand and gravel, considering a slight reduction in cohesion due to low confinement pressure, the surficial factor of safety is 1.52.

For slopes with an average grade up to 50 percent constructed of compacted washout fines, considering a slight reduction in cohesion due to low confinement pressure, the surficial factor of safety is 1.87.

For additional long-term protection from erosion, we recommend that erosion control measures be implemented, such as seeding, erosion control mats, terraces, tracking, or other erosion control measures.

5.3 EARTHWORK

5.3.1 Site Preparation

Preparation of the site must consist of the removal of all non-engineered fills, loose surficial soils, topsoil, debris, and other deleterious materials from beneath an area extending at least five feet beyond the perimeter of the proposed building, rigid pavement, and exterior flatwork areas.

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

The non-engineered fills may remain in flexible pavement areas as long as they are properly prepared. Proper preparation will consist of scarifying and moisture conditioning the upper eight inches and recompacting to the requirements of structural fill. However, it should be noted that compaction of fine-grained soils (if encountered) as structural site grading fill <u>will be very difficult</u>, if not impossible, during wet and cold periods of the year. As an option for proper preparation and recompaction, the upper eight inches of the non-engineered fills may be removed and replaced with granular subbase over proofrolled subgrade. Even with proper preparation, flexible pavements established on non-engineered fills may experience some long-term movements. If the possibility of these movements is not acceptable, these non-engineered fills must be completely removed.

Subsequent to the above operations and prior to the placement of footings, structural site grading fill or floor slabs, the exposed natural subgrade must be proofrolled by passing moderate-weight rubber tire-mounted construction equipment over the surface at least twice. If any loose, soft, or disturbed zones are encountered, they must be completely removed in footing and floor slab areas and replaced with granular structural fill. If removal depth required is greater than two feet, G² must be notified to provide further recommendations. In pavement areas, unsuitable soils encountered during recompaction and proofrolling must be removed to a maximum depth of two feet and replaced with compacted granular structural fill.

5.3.2 Temporary Excavations

Temporary construction excavations through granular soil, not exceeding four feet in depth, above or below the groundwater table, may be constructed with near-vertical sideslopes. Deeper excavations in granular soils, not exceeding 12 feet above or below the water table, should be constructed with sideslopes no steeper than one horizontal to one vertical (1.0H:1.0V). Excavations in granular soils not exceeding 30 feet, should be constructed with sideslopes no steeper than one vertical (1.5H:1.0V). Excavations deeper than one and one-half horizontal to one vertical (1.5H:1.0V). Excavations deeper than 30 feet will require shoring. If clean granular soils are encountered, or if excessive sloughing occurs, the sideslopes must be flattened. Loose and raveling soils are anticipated.

All excavations must be inspected periodically by qualified personnel. If any signs of instability or excessive sloughing are noted, immediate remedial action must be initiated.

5.3.3 Structural Fill

Structural fill is defined as all fill which will ultimately be subjected to structural loadings, such as imposed by footings, floor slabs, pavements, etc. Structural fill will be required as backfill over foundations and utilities, as site grading fill, and in some areas, as replacement fill below footings. All structural fill must be free of sod, rubbish, topsoil, frozen soil, and other deleterious materials. Structural site grading fill is defined as fill placed over fairly large open areas to raise the overall site grade. For structural site grading fill, the maximum particle size should generally not exceed four inches; although, occasional larger particles, not exceeding six inches in

diameter may be incorporated if placed randomly in a manner such that "honeycombing" does not occur and the desired degree of compaction can be achieved. The maximum particle size within structural fill placed within confined areas should generally be restricted to two inches.

The on-site non-engineered fills and natural granular soils may be utilized as structural site grading fill. It should be noted that unless moisture control is maintained, utilization clayey soils as structural site grading fill <u>will be very difficult</u>, if not impossible, during wet and cold periods of the year. Only granular soils are recommended as structural fill in confined areas, such as around foundations and within utility trenches.

Non-structural site grading fill is defined as all fill material not designated as structural fill and may consist of any cohesive or granular soils not containing excessive amounts of degradable material.

5.3.4 Fill Placement and Compaction

Coarse gravel and cobble mixtures (stabilizing fill), if utilized, shall be end-dumped, spread to a maximum loose lift thickness of 15 inches, and compacted by dropping a backhoe bucket onto the surface continuously at least twice. As an alternative, the fill may be compacted by passing moderately heavy construction equipment or large self-propelled compaction equipment over the area at least twice. Subsequent fill material placed over the coarse gravels and cobbles shall be adequately placed so that the "fines" are "worked into" the voids in the underlying coarser gravels and cobbles.

All other structural fill shall be placed in lifts not exceeding eight inches in loose thickness. Structural fills shall be compacted in accordance with the percent of the maximum dry density as determined by the AASHTO⁶ T-180 (ASTM D-1557) compaction criteria in accordance with the table below:

Location	Total Fill Thickness (feet)	Minimum Percentage of Maximum Dry Density
Beneath an area extending at least 3 feet beyond the perimeter of the structure	0 to 8	95
Beneath an area extending at least 5 feet beyond the perimeter of the structure	8 to 15	98
Outside area defined above	0 to 15	90
Slope Buttressing Fill	0 to 35	90
Road base	-	96

⁶

American Association of State Highway and Transportation Officials

Subsequent to stripping and prior to the placement of structural site grading fill, the subgrade must be prepared as discussed in Section 5.3.1, Site Preparation, of this report. In confined areas, subgrade preparation should consist of the removal of all loose or disturbed soils.

Non-structural fill may be placed in lifts not exceeding 12 inches in loose thickness and compacted by passing construction, spreading, or hauling equipment over the surface at least twice.

5.3.5 Utility Trenches

All utility trench backfill material below structurally loaded facilities (flatwork, floor slabs, roads, etc.) should be placed at the same density requirements established for structural fill. If the surface of the backfill becomes disturbed during the course of construction, the backfill should be proofrolled and/or properly compacted prior to the construction of any exterior flatwork over a backfilled trench. Proofrolling may be performed by passing moderately loaded rubber tiremounted construction equipment uniformly over the surface at least twice. If excessively loose or soft areas are encountered during proofrolling, they should be removed to a maximum depth of two feet below design finish grade and replaced with structural fill.

Most utility companies and City-County governments are now requiring that Type A-1 or A-1-a (AASHTO Designation – basically granular soils with limited fines) soils be used as backfill over utilities. These organizations are also requiring that in public roadways the backfill over major utilities be compacted over the full depth of fill to at least 96 percent of the maximum dry density as determined by the AASHTO T-180 (ASTM D-1557) method of compaction. We recommend that as the major utilities continue onto the site that these compaction specifications are followed.

Fine-grained cohesive soils are not recommended for use as trench backfill. The natural sand and gravel may be suitable for use as trench backfill provided it meets the requirements of A-1 or A-1-a material.

5.3.6 Areal Settlements

Areal settlements associated with up to 10 feet of structural site grading fill will be minimal. These settlements are in addition to settlements induced by foundation and floor slab loads. The majority of this settlement will occur during placement.

5.4 FOUNDATIONS

5.4.1 Spread and Continuous Wall Foundations

5.4.1.1 Design Data

The proposed apartment, hotel, mixed-use, and retail structures may be supported upon conventional spread and continuous wall foundations established upon suitable natural soils and/or structural fill extending to suitable natural soils. Under no circumstances shall footings be placed overlying non-engineered fills.

Minimum Recommended Depth of Embedment for Frost Protection	- 30 inches
Minimum Recommended Depth of Embedment for Non-frost Conditions	- 15 inches
Recommended Minimum Width for Continuous Wall Footings	- 18 inches
Minimum Recommended Width for Isolated Spread Footings	- 24 inches
Recommended Net Bearing Pressure for Real Load Conditions	
Footings having minimum depth of embedment and width	- 3,000 pounds per square foot*
Footings having a minimum depth of embedment and a minimum plan dimension of four feet or greater	 6,000 pounds per square foot*
Bearing Pressure Increase for Seismic Loading – Vertical Downward	- 50 percent

- * For intermediate-sized footings, the appropriate bearing pressure may be interpolated on a straightline basis from these values.
- ** Do not apply to edge bearing loading conditions.

The term "net bearing pressure" refers to the pressure imposed by the portion of the structure located above lowest adjacent final grade. Therefore, the weight of the footing and backfill to lowest adjacent final grade need not be considered. Real loads are defined as the total of all

dead plus frequently applied live loads. Total load includes all dead and live loads, including seismic and wind.

5.4.1.2 Installation

Under no circumstances shall the footings be established upon non-engineered fills, loose or disturbed soils, rubbish, construction debris, other deleterious materials, frozen soils, or within ponded water. If unsuitable soils are encountered, they must be completely removed and replaced with compacted structural fill.

The width of structural replacement fill below footings should be equal to the width of the footing plus one foot for each foot of fill thickness.

5.4.1.3 Settlements

Settlements of conventional shallow foundations designed and installed in accordance with the above recommendations and supported upon a sequence of natural granular soils and/or granular structural fill are projected to be on the order of one inch or less.

Settlements will occur rapidly with approximately 50 to 70 percent occurring during construction.

5.4.2 Reinforced Continuous Mat

As stated previously, the condominium structure will likely need to be established on a continuous mat due to overlap of the large footings necessary. The net pressure imposed by the base of a mat established a minimum of 25 feet deep will be negligible; therefore, the settlements would be mostly elastic and occur almost instantaneously with application of the load. The projected settlement varies depending on the depth and thickness of the mat. A mat established at a greater depth would impose less net load and therefore experience less settlement.

A reinforced mat with a negligible net load is projected to experience elastic settlements on the order of one to one and one-half inches with the greatest settlement at the center of the mat. At the edges and corners, mat settlements would be approximately 50 to 60 percent of the center settlements. The mat must be underlain by a minimum of 18 inches of granular structural fill extending to suitable natural soils.

For a mat established on a minimum of 18 inches of granular structural fill and with a minimum embedment depth of 25 feet, we recommend that a modulus of reaction of 25 pounds per cubic inch be used for preliminary design. We request that a bearing pressure distribution plan be provided to our office for review, when available.

5.5 LATERAL RESISTANCE

Lateral loads imposed upon foundations due to wind or seismic forces may be resisted by the development of passive earth pressures and friction between the base of the footings and the supporting soils. In determining frictional resistance on granular soils, a coefficient of 0.45 should be utilized. Passive resistance provided by properly placed and compacted granular structural fill above the water table may be considered equivalent to a fluid with a density of 300 pounds per cubic foot. Below the water table, this granular soil should be considered equivalent to a fluid with a density of 150 pounds per cubic foot.

A combination of passive earth resistance and friction may be utilized provided that the friction component of the total is divided by 1.5.

5.6 LATERAL PRESSURES

The lateral pressure parameters as presented within this section, assume that the backfill will consist of a drained granular soil placed and compacted in accordance with the recommendations presented herein. Subdrains around below-grade levels will be an essential part of construction.

The lateral pressures imposed upon subgrade facilities will, therefore, be basically dependent upon the relative rigidity and movement of the backfilled structure. For active walls, such as retaining walls which can move outward (away from the backfill), granular backfill may be considered equivalent to a fluid with a density of 35 pounds per cubic foot in computing lateral pressures. For more rigid basement walls that are not more than 10 inches thick and 12 feet or less in height, granular backfill may be considered equivalent to a fluid with a density of 45 pounds per cubic foot. For very rigid non-yielding walls, granular backfill should be considered equivalent to a fluid with a density of at least 60 pounds per cubic foot. The above values assume that the surface of the soils slope behind the wall is horizontal, that the granular fill has been placed and <u>lightly</u> compacted, not as a structural fill. If the fill is placed as a structural fill, the values should be increased to 45 pounds per cubic foot, 60 pounds per cubic foot, and 120 pounds per cubic foot, respectively. If the slope behind the wall is two horizontal to one vertical the values for purely active walls and basement walls should increase to 57 pounds per cubic foot and 67 pounds per cubic foot, respectively.

In addition to the static pressures, seismic loadings must be considered. Recommended average lateral uniform pressure for various height walls are tabulated on the following page and assume a granular wall backfill with a horizontal grade above the wall:

Wall Height (feet)	Uniform Seismic Lateral Pressure*, ** (psf)
5	106
10	213
15	319
20	426
40	851

* Maximum short-term pressures, they are not sustained loads.

** For intermediate height wall, the lateral pressure will be developed based upon a straightline interpolated between the pressures at the specific height.

Note that the pressures presented in the section do not include surcharge loadings, such as floor slabs, adjacent footings, etc.

5.7 FLOOR SLABS

Floor slabs may be established upon suitable undisturbed natural soils, and/or upon structural fill extending to suitable natural soils or properly prepared existing surface soils. Non-engineered fills and topsoil are not considered suitable. To provide a capillary break, it is recommended that floor slabs be directly underlain by at least four inches of "free-draining" fill, such as "pea" gravel or three-quarters- to one-inch minus clean gap-graded gravel. Settlements of lightly to moderately loaded floor slabs are anticipated to be minor.

5.8 SUBDRAINS

Due to the potential for infiltration from the adjacent slope, and to provide additional protection, we recommend that a foundation subdrain be installed along the up-gradient and side-gradient subgrade walls.

Foundation subdrains should consist of a four-inch diameter perforated or slotted plastic or PVC pipe enclosed in clean gravel. The invert of a subdrain should be at least two feet below the top of the lowest adjacent floor slab. The gravel portion of the drain should extend two inches laterally and below the perforated pipe and at least one foot above the top of the lowest adjacent floor slab. The gravel zone must be installed immediately adjacent to the perimeter footings and the foundation walls. To reduce the possibility of plugging, the gravel must be wrapped with a geotextile, such as Mirafi 140N or equivalent.

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

Above the subdrain, a minimum four-inch-wide zone of "free-draining" sand and gravel should be placed adjacent to the foundation walls and extend to within two feet of final grade. The upper two feet of soils should consist of a compacted clayey cap to reduce surface water infiltration into the drain. As an alternative to the zone of permeable sand and a prefabricated "drainage board," such as Miradrain or equivalent, may be placed adjacent to the exterior below grade walls. Prior to the installation of the footing subdrain, the below-grade walls should be dampproofed. The slope of the subdrain should be at least 0.3 percent. The gravel placed around the drainpipe should be clean three-quarters- to one-inch minus gap-graded gravel and/or "pea" gravel. The foundation subdrains can be discharged into the area subdrains, storm drains, or other suitable down-gradient location.

5.9 PAVEMENTS

The properly prepared non-engineered fills will exhibit poor engineering characteristics when saturated or nearly saturated. Non-engineered fills may remain in flexible pavement areas if properly prepared, as stated previously in this report. Rigid pavements shall not be placed overlying non-engineered fills, even if properly prepared. <u>A pavement section recommendation for the re-alignment of Wasatch Boulevard is not provided in this report</u>. We recommend that the section for Wasatch Boulevard match the existing Wasatch Boulevard section where it joins with 6200 South Street along the west side of the project. A pavement section recommendation for Wasatch Boulevard can be provided if detailed traffic loading is available.

Considering the existing non-engineered soils as the subgrade soils and the projected traffic, the following pavement sections are recommended:

Roadway Areas

(Moderate Volume of Automobiles and Light Trucks with Light Volume of Medium- and Heavy-Weight Trucks) [5 to 10 equivalent 18-kip axle loads per day]

Flexible Pavements: (Asphalt Concrete)

4.0 inches	Asphalt concrete
10.0 inches	Aggregate base course
Over	Minimum of 12 inches of suitable granular soil (natural and/or fill). This layer can also be considered as a subbase component.

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

<u>Rigid Pavements:</u> (Non-reinforced Concrete)

> 6.0 inches Portland cement concrete (non-reinforced)
> 5.0 inches Aggregate base course
> Over Minimum of 12 inches of suitable granular

soil (natural and/or fill). This layer can also be considered as a subbase component.

Parking Areas

(Moderate Volume of Automobiles and Light Trucks with Light Volume of Medium- and Heavy-Weight Trucks) [5 to 7 equivalent 18-kip axle loads per day]

Flexible Pavements: (Asphalt Concrete)

	3.0 inches	Asphalt concrete
	8.0 inches	Aggregate base course
	Over	Minimum of 12 inches of suitable granular soil (natural and/or fill). This layer can also be considered as a subbase component.
<u>Rigid Pavements:</u> (Non-reinforced Cond	crete)	
	5.0 inches	Portland cement concrete (non-reinforced)
	6.0 inches	Aggregate base course
	Over	Minimum of 12 inches of suitable granular soil (natural and/or fill). This layer can also be considered as a subbase component.

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

Rigid pavements over non-engineered fill will be subjected to settlement which will result in cracking of the concrete surface. Asphalt concrete pavements would also settle but are much more tolerant to movement. In critical areas, it is our recommendation that rigid pavements over non-engineered fills be reinforced with No. 4 rebar on 18-inch centers.

For dumpster pads, we recommend a pavement section consisting of six and one-half inches of Portland cement concrete, four inches of aggregate base course, over properly prepared natural subgrade or site grading structural fills.

Granular structural site grading fill, if sufficiently "clean," will satisfy the requirements for granular subbase.

Asphalt concrete and base course components should meet the requirements and be placed in accordance with the Utah Department of Transportation specifications.

The above rigid pavement sections are for reinforced and non-reinforced Portland cement concrete. Construction of the rigid pavement should be in sections 10 to 12 feet in width with construction or expansion joints or one-quarter depth saw-cuts on no more than 12-foot centers. Saw-cuts must be completed within 24 hours of the "initial set" of the concrete and should be performed under the direction of the concrete paving contractor. The concrete should have a minimum 28-day unconfined compressive strength of 4,000 pounds per square inch and contain 6 percent ± 1 percent air-entrainment.

5.10 GEOSEISMIC SETTING

5.10.1 General

As of July 2019, the State of Utah has adopted the International Building Code (IBC) 2018 and International Residential Code (IRC) 2015. The IBC 2018 code determines the seismic hazard for a site based upon 2008 mapping of bedrock accelerations prepared by the United States Geologic Survey (USGS) and the soil site class. The USGS values are presented on maps incorporated into the IBC code and are also available based on latitude and longitude coordinates (grid points).

The structures must be designed in accordance with the procedure presented in Section 1613, Earthquake Loads, of the IBC 2018 edition.

5.10.2 Faulting

The results of the fault study indicate that active normal faulting was observed in the continuous trench. Study details and fault setbacks are presented in The Surface Fault Rupture Hazard Evaluation is enclosed with this report; see Appendix A.

5.10.3 Soil Class

As stated earlier, a Vs_{100} value of 1549.0 ft/sec was calculated from the ReMi survey performed in the lower portion of the site. Based on the shear wave velocity profile and on the soils encountered in our exploration borings, we recommend that "Site Class C – Very Dense Soil and Soft Rock" be utilized for the design of structures at the site. The average shear-wave velocity profile can be seen in Appendix B.

5.10.4 Ground Motions

The IBC 2018 code is based on 2014 USGS mapping, which provides values of short and long period accelerations for the Site Class B boundary for the Maximum Considered Earthquake (MCE). This Site Class B boundary represents a hypothetical sandstone bedrock surface and must be corrected for local soil conditions. The following table summarizes the peak ground and short and long period accelerations for a MCE event and incorporates a soil amplification factor for a Site Class C soil profile in the second column. Based on the site latitude and longitude (40.6299 degrees north and -111.7979 degrees west, respectively), the values for this site are tabulated below:

Spectral Acceleration Value, T Seconds	Site Class B-C Boundary [mapped values] (% g)	Site Class C [adjusted for site class effects] (% g)				
Peak Ground Acceleration						
(Geo-Mean)	60.9	73.1				
0.2 Seconds (Short Period						
Acceleration)	S _S = 134.2	S _{MS} = 161.0				
1.0 Seconds (Long Period						
Acceleration)	S ₁ = 49.8	S _{M1} = 74.7				

The IBC 2018 code design accelerations (S_{DS} and S_{D1}) are based on multiplying the above accelerations (adjusted for site class effects) for the MCE event by two-thirds.

5.10.5 Liquefaction

As shown on the Cottonwood Heights City Ordinance Chapter 19.72 (SLEDS) liquefaction potential map, the site is mapped within an area having "very low" liquefaction potential during the design seismic event.

The site is located on a boundary that has been identified by the Utah Geological Survey as having "moderate" liquefaction potential. Liquefaction is defined as the condition when

saturated, loose, finer-grained sand-type soils lose their support capabilities because of excessive pore water pressure which develops during a seismic event.

Due to the medium dense nature of the saturated granular soils encountered, our analysis indicates liquefaction is not anticipated during the design seismic event.

Calculations were performed using the procedures described in the 2008 Soil Liquefaction During Earthquakes Monograph by Idriss and Boulanger⁷.

5.11 SITE OBSERVATIONS

As stated previously, due to the variable nature of the non-engineered fills encountered, a qualified geotechnical engineer must aid in verifying that all non-engineered fills have been completely removed prior to the placement of structural site grading fills, footings, or foundations.

7

Idriss, I. M., and Boulanger, R. W. (2008), Soil liquefaction during earthquakes: Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, 261 pp.

Job No. 528-005-20 Geotechnical Study and Slope Stability Analysis May 13, 2020

We appreciate the opportunity of providing this service for you. If you have any questions or require additional information, please do not hesitate to contact us.

Respectfully submitted,

Gordon Geotechnical Engineering, Inc.

Jordan K. Culp, State of Utah No. 10975604 Project Engineer

JKC/PRE:sn

Encl.	Figure	1,	Vicinity Map
	Figure	2,	Area Map
	Figure	3,	Site Plan
	Figures	4A	through 4C, Log of Borings
	Figures	4D	through 4K, Log of Test Pits
	Figure	5,	Unified Soil Classification System
	Figure	6,	Photographs
	Appendix	Α,	Geologic Hazards Study Report
	Appendix	В,	ReMi Survey Results
	Appendix	С,	Direct Shear Test Results
	Appendix	D,	Slope Stability Analysis Results

Addressee (3 + email)

Reviewed by:

Patrick R. Emery, State of Utah No. 7941710 Senior Engineer ROCKWORTH COMPANIES JOB NO. 528-005-20

REFERENCE: USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE MAPS TITLED "SUGAR HOUSE, UTAH", AND "DRAPER, UTAH", BOTH DATED 1998 FIGURE 1 VICINITY MAP

KEY

X

С

- Borings, This Study.
- Test Pits, This Study.

Borings, Previous
 GSH Study (2016).

Cross-Sections for Stability Analysis.

Proposed Buildings.

APPROXIMATE SITE BOUNDARY

FIGURE 3 SITE PLAN

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-02-20

Water Level: 32.5' (03-02-20), 36.0' (03-25-20)

DESCRIPTION		WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
12.0" AGGREGATE BASE	00020000		_									
FINE AND COARSE GRAVEL with trace silt and fine sand; brown (GP)		1997 J	_									slightly moist very dense
	2000000 20000 20000 20000 20000 20000 20000		-		SPT	50 5"						
FINE TO COARSE SAND with some silt and occasional silty fine sand layers 4" thick; tan (SP- SM)		-	— 5 —		SPT	66						slightly moist very dense
			_		SPT	31	9.5		35.2			
			- 									dense moist
grades with trace fine and coarse gravel			_		SPT	26	8.3		3.0			medium dense
			_									
grades grayish-tan		-	— 15 —	X	D	90	16.5	112				dense
		-	_									
SILTY CLAY with trace fine sand and occasional fine sand seams; tan (CL)			_									moist very stiff
			—20 —	X	D	31	24.3	98				
			_									saturated
			_									
SILTY FINE AND COARSE GRAVEL with some fine to coarse sand and frequent cobbles; brown (GM)			—25			32						saturated

The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is necessary for a proper understanding of the nature of the subsurface material.
BOREHOLE B-1

Page: 2 of 2

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: 4" Case ODEX

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-02-20

Water Level: 32.5' (03-02-20), 36.0' (03-25-20)

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
				X	D	32						medium dense
FINE TO COARSE SAND with some silt and gravel; tan (SP-SM)			_									slightly moist medium dense
			— 30 -		SPT	22	2.8		10.7			
			_									saturated
SILTY FINE SAND with frequent fine sandy clay layers 6" thick ; tan (SM)			-									saturated medium dense
			— 35 -		SPT	22						
			-									
grades with occasional silty clay layers 1/2" thick			_40 _	X	D	40	23.2	99	18.5			
Stopped drilling at 39.5'.			_									
Stopped sampling at 41.0'.			-									
Installed slotted PVC pipe to 40.0'.			- 									
			_									
			-									
			_									
			—50									

necessary for a proper understanding of the nature of the subsurface material.

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-02-20

Water Level: 29.0' (03-02-20), 30.8' (03-25-20)

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
FINE AND COARSE GRAVEL with some silt and sand and occasional small boulders; tan (GP-GM)			_									slightly moist very dense
			_		SPT	50 5"	0.9		9.8			
			—5 -		SPT	74						
			_									
	000 000 000 000 000 000 000 000 000 00		- 		SPT	36	1.0		4.6			dense
			_									
grades with occasional cobbles and boulders			- —15	-11								
	200 200 200 200 200 200 200 200 200 200		_		SPT	69	2.8		10.2			very dense
			_									
			—20 -		SPT	14						
			_									
	2000 000 000 000 000 000 000 000 000 00		- —25	11								

SURFACE CONDITIONS, is necessary for a proper understanding of the nature of the subsurface material.

Page: 1 of 3

Page: 2 of 3

BOREHOLE B-2

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

G

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-02-20

Water Level: 29.0' (03-02-20), 30.8' (03-25-20)

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
FINE AND COARSE GRAVEL with some silt and sand and occasional small boulders; tan (GP-GM)			_		SPT	39	1.2		5.9			dense
			_									saturated
		.	— 30		SPT	8						
		-	-									
SILTY CLAY with trace fine sand; gray (CL)			_									saturated very stiff
			— 35 -	X	D	30	29.8	94				
SILTY FINE SAND			_									
gray (SM)			- 									saturated dense
			-		D	93	21.6	104				
FINE SANDY CLAY gray (CL)			_									saturated very stiff
gray (OL)			- —45	11								
			_		SPT	27	25.0		66.3	35	21	
			-									
discussion in the text under the section titled, SUBSURFACE CONDITIONS, is			- 50									FIGURE

(con't)

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: 4" Case ODEX

Elevation: ---

Remarks:

Project No.: <u>528-005-20</u>

Client: Rockworth Companies

Date Drilled: 03-02-20

Water Level: 29.0' (03-02-20), 30.8' (03-25-20)

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
			_		SPT	18						
Stopped drilling at 50.0'. Stopped sampling at 51.5'. Installed slotted PVC pipe to 50.0'.			- - 									
			- - 									
The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is			- - - 75									FIGURE 4B

BOREHOLE B-2

FIGURE 4B (con't)

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-13-20

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
SILTY CLAY, FILL with some fine to coarse sand and fine gravel; reddish-brown (CL- FILL)			_									moist soft
CONCRETE WASHOUT FILL white (CONCRETE)			- 									dry very dense
grades with occasional layers of sand and gravel 6" to 24"			- 	X	D							sampler bouncing
sampled because soil was encountered at 14.0', no recovery, sampler bouncing on concrete			-									
layers of soil on the order of 6" to 2' between layers of concrete			20 		SPT	50 4"						sampler bouncing
			—25			50 2"						

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

Project No.: 528-005-20

Date Drilled: 03-13-20

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
			_ _ 30 	1	SPT	2"						
FINE AND COARSE GRAVEL, FILL with some sand; light brown (GP-FILL)	20022000 2002000 2002000 2002000 2002000 200200		 35 		D	100 3"	5.0		3.9			moist very dense
			 40 		SPT	50 3"						
CONCRETE WASHOUT FILL white (CONCRETE)			- 45 50									dry very dense

necessary for a proper understanding of the nature of the subsurface material.

Client: Rockworth Companies

Page: 3 of 5

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: 4" Case ODEX

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-13-20

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
			-									
FINE TO COARSE SAND AND FINE AND COARSE GRAVEL with trace silt; grayish-brown (SP/GP)	002 2002 2009 2009 2009 2009 2009 2009		— 55 — —	X	D	103	1.8	123	4.6			sligthly moist very dense
	2000 2000 2000 2000 2000 2000 2000 200		 60 		SPT	64	1.1		6.5			
	200 200 200 200 200 200 200 200 200 200		 65 		D	119	1.8	91				
	2000 2000 2000 2000 2000 2000 2000 200		_ _ 70	T	SPT	62						
drilling indicates cobbles and boulders	2003 2004 2005 2006 2006 2006 2006 2006 2006 2006		_									
SILTY FINE SAND thinly layered; light brown (SM)			_ 75			51						slightly moist medium dense

Page: 4 of 5

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: <u>4" Case ODEX</u>

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-13-20

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
			_		D	51	11.1	101				
SILTY FINE TO MEDIUM SAND with some fine gravel; light brown (SM)			_									slightly moist medium dense
			— 80 —		SPT	65	3.6		18.2			
FINE AND COARSE GRAVEL			_									slightly moist very dense
with some fine to coarse sand and silt; likely with cobbles and boulders; light yellowish-brown (GP-GM)	0.000000000000000000000000000000000000		-	-11								
	20000000000000000000000000000000000000		— 85 —		SPT	50 2"	2.2		10.4			
			_									
	0.0.0.0 0.0.0.0 0.0.0.0		- 		SPT	50						
	0.650 0.650 0.650		_			5"						
	200 200 200 200 200 200 200 200 200 200		_									
	00 20 20 20 20 20 20 20 20 20 20 20 20 2		_ 95		SPT	50 3"	0.2		0.9			
	2002 2002 2002 2002 2002 2002		_									
	00000000000000000000000000000000000000		_									
	9000 000 000		— 100			50 5"						

necessary for a proper understanding of the nature of the subsurface material.

Project Name: Proposed Gravel Pit Development

Location: 6695 Wasatch Boulevard, Cottonwood Heights, Utah

Drilling Method: 4" Case ODEX

Elevation: ---

Remarks:

Project No.: 528-005-20

Client: Rockworth Companies

Date Drilled: 03-13-20

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
	2°9 000 000	-	_		SPT	5"						
Stopped drilling at 99.5'. Stopped sampling at 101.0'. Installed slotted PVC pipe to 101.0'. No groundwater encountered at time of drilling.					SPT	5"						
			-									
			-									
The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is		-	- 125									FIGURE 4C

BOREHOLE B-3

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
SILTY AND CLAYEY FINE TO COARSE SAND, FILL with fine and coarse gravel; reddish-brown (SC-SM-FILL)			_ _ 5		В							moist "medium dense"
Excavation refusal at 7.0' on concrete washout material. Stopped sampling at 7.0'. No groundwater encountered at time of excavation. No signficant sidewall caving. Trenched northwest approximately 40.0' at refusal.		-	- - - - - - - - - - - - - - - -									
The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is			20 25									EIGURE 4D

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
CLAYEY FINE TO COARSE SAND AND FINE AND COARSE GRAVEL, FILL reddish-brown (SC/GC-FILL) Excavation refusal at 10.0' on concrete washout material. No groundwater encountered at time of excavation. No significant sidewall caving. Trenched southeast approximately 20.0' at refusal.			- - - - - - - - - - - - - - - - - - -									moist "loose"
The discussion is the text under the section titled, SUDSUDEACE CONDITIONS, is			-25									

TEST PIT TP-3

Page: 1 of 1

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
SILTY AND CLAYEY FINE TO COARSE SAND, FILL with fine and coarse gravel; reddish-brown (SC-SM-FILL)			- - - - 5 -									
SANDY CLAY, FILL red (CL-FILL) [RED CLAY]			- 		В				67.8			moist "stiff"
grades dark brown			_									
			— 15 — —									
			20 		В							
Excavation refusal at 23.0' due to maximum reach. Stopped sampling at 22.5'. No groundwater encountered at time of excavation. No significant sidewall caving.			- 									

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
CLAYEY FINE TO COARSE SAND AND FINE AND COARSE GRAVEL, FILL with occasional slabs of concrete and asphalt concrete, cobbles, and small boulders; reddish-brown (SC/GC-FILL)			- - -									
			- - - - 10									
FINE TO COARSE SAND AND GRAVEL	2000 2000 2000 2000		- - - 		В							slightly moist
light brown (SP-GP) [NATIVE] Stopped excavation at 16.0'. Stopped sampling at 15.5'. No groundwater encountered at time of excavation.	3006 3006		- - -									"dense"
No signficant sidewall caving.			20 _ _ _									

The discussion in the text under the section titled, SUBSURFACE CONDITIONS, is necessary for a proper understanding of the nature of the subsurface material.

Page: 1 of 1

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
FINE SANDY CLAY/CLAYEY FINE SAND, FILL brown (CL/SC-FILL) [WASHOUT FINES]			_									
MEDIUM TO COARSE SAND, FILL	<u>IIIIXIIII</u> Actor Actor				В		15.0		59.3			
brown (SP-FILL) SANDY CLAY, FILL brown (CL-FILL)			-		В		20.4		70.6			slightly moist "medium stiff"
[WASHOUT FINES]			_5		Ь		20.4		70.0			
			_									
MEDIUM TO COARSE SAND, FILL brown (SP-FILL)			10		В		1.9		4.6			
SANDY CLAY, FILL brown (CL-FILL) [WASHOUT FINES]			— 10 - -									
MEDIUM TO COARSE SAND, FILL brown (SP-FILL)			-									
SANDY CLAY, FILL brown (CL-FILL) [WASHOUT FINES]			—15 - -									
Stopped excavation at 16.0'.			_									
Stopped sampling at 15.5'.			-									
No groundwater encountered at time of excavation.			_20									
No signficant sidewall caving.			- - - -25									

TEST PIT TP-6

Page: 1 of 1

Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
SILTY CLAY, FILL with medium to coarse sand; brown (CL-FILL) [WASHOUT FINES]			_									slightly moist "medium stiff"
			_ _ 5		В		17.5		92.7			
MEDIUM TO COARSE SAND, FILL			_		В		21.8		69.3			
brown (SP-FILL) SANDY CLAY, FILL brown (CL-FILL) [WASHOUT FINES]			-									
MEDIUM TO COARSE SAND, FILL brown (SP-FILL)			— 10 - -		В		2.8		4.9			
SANDY CLAY, FILL brown (CL-FILL) [WASHOUT FINES]			- - 				2.0					
MEDIUM TO COARSE SAND, FILL brown (SP-FILL)	netri netri Posta esta Posta esta		_									
Stopped excavation at 18.0'. Stopped sampling at 12.5'.			- 20									
No groundwater encountered at time of excavation. No signficant sidewall caving.			_									
			- —25									

Page: 1 of 1

TEST PIT TP-7

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION				DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
FINE SANDY CLAY, FILL brown (CL-FILL)	[WASHOUT FINES]			_									
MEDIUM TO COARSE SAND, FILL brown (SP-FILL)				_									
FINE SANDY CLAY, FILL brown (CL-FILL) "perched" moisure at 4.0'	[WASHOUT FINES]			- - 									very moist "medium stiff"
				_5		В		32.0		62.7			
				-									
				_									
				—10									
				_ 10									
				_									
				_									
				_									
				—15									
				_									
Stopped excavation at 14.0'.				_									
Stopped sampling at 5.5'.				_									
No groundwater encountered a	t time of excavation.			_									
Collapsing sidewalls.				_20									
				_									
				_									
				_									
				_									
				—25									

Project Name: Proposed View 62 Development

Location: 6200 S Wasatch Boulevard, Cottonwood Heights, Utah

Excavating Method: Hitachi Trackhoe

Elevation: ---

Remarks:

Project No.: 528-002-18

Client: Rockworth Companies

Date Excavated: 02-01-18

Water Level: No groundwater encountered.

DESCRIPTION	GRAPHIC LOG	WATER LEVEL	DEPTH (FT.)	SAMPLE SYMBOL	SAMPLE TYPE	BLOWS/FT.	MOISTURE (%)	DRY DENSITY (PCF)	% PASSING 200	LIQUID LIMIT (%)	PLASTIC LIMIT (%)	REMARKS
CLAYEY FINE SAND/FINE SANDY CLAY, FILL brown (CL/SC-FILL) [WASHOUT FINES]			_									very moist "medium dense"
"perched" moisure at 4.5'			-		В		24.3		51.9			-
			—5 —		В		21.5		53.7			very moist "medium stiff"
grades with occasional cobbles at 9.0'			- - 10 - -									
Stopped excavation at 14.0'. Stopped sampling at 6.5'. No groundwater encountered at time of excavation. Collapsing sidewalls.												

BSURFACE CONDITIONS, is on titled, SU necessary for a proper understanding of the nature of the subsurface material.

GORDON GEOTECHNICAL ENGINEERING, INC.

			UN	IFIED SOI	L CLASS	IFICATION	SYSTEM					
		FIELD ID!	ENTIFICATION PRO	CEDURES			GRAPH SYMBOL	LETTER SYMBOL	ту	PICAL DESCRIPTIONS		
		GRAVELS	CLEAN GRAVELS	Wide range in amounts of	grain size and sub all intermediate par	estantial rticle sizes.	0.00	GW	Well graded gravel little or no fines.	s, gravel-sand mixtures,		
	COARSE GRAINED	More than half of coarse fraction is larger than No. 4	(Little or no lines)	Predominantly with some in	r one size or a rang itermediate sizes o	je of sizes nissing,	200	GP	Poorly graded grav little or no fines.	els, gravel-sand mixtures,		
More than half of material is lar <u>ger</u> than No. 200 sleve size. B		sleve size. (For visual classifications,	GRAVELS WITH FINES	Non-plastic (ir see ML belo	nes (for ident)ficatio w).	on procedures		GM	Silty gravels, poorl silt mixtures.	y graded gravel-sand+		
		the 1.4" size may be used as equivalent to the No. 4 sieve size.)	(Appreciable amount of fines)	Plastic fines (I see CL belo	or identification pr w).	rocedures	22	GC	Clayey gravels, po clay mixtures.	orly graded gravel-sand-		
		SANDS	CLEAN SANDS	Wide range in amounts of	grain sizes and su all intermediate pa	bstantial rticle sizes.		SW	gravelly sands, little or			
	(The No. 200 sieve	More than half of coarse fraction is smaller than No. 4 sleve size.	(Little or no fines)	Predominantly some Intern	one size or a rang rediate sizes missing	ge of sizes with ng,		SP	Poorly graded sand no fines.	is, gravelly sends. little or		
	size is about the smallest particle visible to the		SANDS WITH FINES	Non-plastic lines (for identification procedures see ML below).				SM	Silty sands, poorly graded sand-silt mixtures.			
	naked eye)	(For visual classifications, the 1:4" size may be used as equivalent to the No. 4 size size.) fines)			Plastic fines (for identification procedures see CL below).				Clayey sands, poorly graded sand-clay mixtures.			
		IDENTIFICATION	PROCEDURES ON	CRUSHING CHARACTERISTICS	DILATANCY	TOUGHNESS	r Mit)					
	FINE GRAINED SOILS	SILTS AND	CLAYS	None to slight	Quick to s	low None		ML	Inorganic silts and silty or clayey fine	very line sands, rock flour, sand with slight plasticity,		
	More than half of material is sm <u>aller</u> than No. 200	Liquid limit less th	an 50	Medlum to high	None to very slow			CL	Inorganic clays of I gravelly clays, san	ganic clays of low to medium plasticity, effy clays, sandy clays, silty clays, lean clays,		
(The No. 200 sleve				Slight to modium	Slow	Slight		OL	Organic silts and o plasticity,	organic silt-clays of low		
		SILTS AND CLAYS			Slow to non	e Slight to medlum		MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.			
	size is about the smallest particle visible to the	Liquid limit greater th		High to very high	None	High		СН	Inorganic clays of	nigh plasticity, fat clays.		
							VITTI					
	naked eya)			Medium to high	None to very slow	Slight to medium		ОН	Organic clays of m	odlum to high plasticity.		
	naked eya) HIGł	HLY ORGANIC SOILS		Readily Identif frequently t	ied by color, odor, by fibrous texture.	spongy feel and		Pt	Peal and other high	nly organic soils.		
	naked eye) HiG} Boundary, clossifications All sleve sizes on this	HLY ORGANIC SOILS s-Solis possessing charactes chart are U.S. standard.	ristics of two grou	Readily Identif frequently t	ied by color, odor, by fibrous texture.	spongy feel and		Pt	Peal and other high	nly organic soils.		
NERA	naked eye) High Boundary classifications All slave sizes on this AL NOTES	g-Soïs possessing character chart are U.S. standard.]	Readily Identif frequently t	ied by color, odor, by fibrous texture.	medium spongy feel and is of group symbols.	For example G	Pt	Pest and other high grooded grovel—son	nly organic soils.		
NER/	naked eye) High Boundary, clossifications All aleve sizes on this AL NOTES eral, Unified Soil Class gs were evaluated by	s -Soils possessing character	isented e rore,	Readily Identif frequently t	very slow led by color, odar, by fibraus texture.	medium spongy feel and is of group symbols. IED SOIL	For example of TORVANE UNDRAINED SHEAR	Pt Pocki PENETROI UNCONF	Pest and other high grooded gravel—man ET METER INED SSIVE	nly organic soils.		
NER/ I gen Ihe lo Jal de	naked eye) High Boundary classifications All sieve sizes on this AL NOTES eral, Unified Soil Class ggs were evaluated by tr ssignations (based on	s-Solla possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may dif he logs represent approxim	esented e rore, ffer.	Readily Identif frequently t	very slow lied by calar, ador, by fibraus texture. d by combination FINE - GRAIN	medium spongy feel and is of group symbols. IED SOIL	For example of TORVANE UNDRAINED	Pt Pocki PENETROI UNCONF	Peat and other high ground growel som ET METER INED SSIVE H (16th) s Easily pen	Ily organic solls. 5 mbdure with cloy binder. FIELD TEST etrated several inches by Thumb.		
NERA In gen Ihe lo ual de ines Indari	naked eye) HIGP Boundary classifications All aleve atzes on this AL NOTES eral, Unified Soil Class gis were evaluated by segrations (based on separating strata on th les only Actual transiti represent general soil (s-Soïs possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may dif he logs represent approxim ions may be gradual. conditions observed at teh	isented e rore, fter. nate	Readily Identif frequently t	very slow led by color, edor, y fibrous texture. d by combination FINE - GRAIN CONSISTENCY	medium spongy feel and a of group symbols. IED SOIL / SPT (blows.ft)	TORVANE UNDRAINED SHEAR STRENGTH (151)	Pt POCKI PENETRO UNCONF COMPRESSTRENGT	Peal and other high groded grovel - son ET METER INED SSIVE H (ter) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ity organic solla. d mbdure with eley binder. FIELD TEST etrated several inches by Thumb. through fingers. etrated 1° by Thumb , Molded by pressure.		
NERA in gen ine lo ual de indari ogs r xplor lo wa	Nicked eye) High Boundary closelfications All aleve sizes on the AL NOTES eral, Unified Soil Class grower evaluated by v esignations (based on the sening strata on the ise only Actual transiti represent general soil i ration onthe date indice urranty is provided as to	s-Soïs possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may di ne logs represent approxim lons may be gradual. conditions observed at teh lated.	sented e rore, fter. nate	Readily Identif frequently t	very slow led by color, adar, y fibrous texture. I by combinction FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff	ED SOIL (blows ft) (clows ft) (2	For example of TORVANE UNDRAINED SHEAR STRENGTH (191) <0,125 0,125 - 0,25 0,25 - 0,5	Pt POCKI PENETROI UNCONFE COMPRE STRENGT <0.2: 0.25 - 1 0.5 - 1	Pest and other high groded grovel—son ET METER NIED SSIVE H (tst) 5 5 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	Ily organic solls. d mixture with cloy binder. FIELD TEST etrated several inches by Thumb. hrough lingers. etrated 1 " by Thumb, Molded by 'pressure. over 1/2 " by Thumb with moera ded by strong finger pressure.		
NERA i gen he lo ial de ines ndari ogs r xplor	Nicked eye) High Boundary, closeifications All aleve sizes on this AL NOTES erail, Unified Soil Class gas were evaluated by seignations (based on separating strata on th les only Actual transiti represent general soil of ration onthe date indice	s-Soïs possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may di ne logs represent approxim lons may be gradual. conditions observed at teh lated.	sented e rore, fter. nate	Readily Identif frequently t	very slow very slow v fibrous texture. d by combinction FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Stiff	ED SOIL (SPT (blows ft) <2 2 - 4 4 - 8 8 - 15	TORVANE UNDRAINED SHEAR STRENGTH (ISI) <0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0	Pt POCKI PENETROI UNCONF COMPRE: STRENGT <0.2! 0.25 - 1 0.5 - 1 1.0 - 2	Peat and other high ground growel-son ET WETER INED SSIVE H (1st) 5 5 6 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ity organic solls. 3 mbture with cloy binder. FIELD TEST etrated several inches by Thumb. hrough fingers. terated 1 " by Thumb and Molded by 'pressure. over 1/2 " by Thumb with moera fed by strong finger pressure. bout 1/2 " by Thumb but penetrat reat effort		
NER/ I gen he lo ual de ines indarl ogs r xplor lo wa ween	Nicked eye) High Boundary closelfications All aleve sizes on the AL NOTES eral, Unified Soil Class grower evaluated by v esignations (based on the sening strata on the ise only Actual transiti represent general soil i ration onthe date indice urranty is provided as to	s-Soïs possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may di ne logs represent approxim lons may be gradual. conditions observed at teh lated.	sented e rore, fter. nate	Readily Identif frequently t	very slow led by color, odor, y fibrous texture. I by combination FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff	medium spongy feel and a of group symbols. ED SOIL / SPT (blows ft) <2	TORVANE UNDRAINED SHEAR STRENGTH (ISI) <0.125 0.25 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0	Pt POCKI PENETROI UNCONF COMPRE: STRENGT <0.22 0.25 -1 0.5 - 1 1.0 - 2 2.0 - 4	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi 1 Indented a only with (0.0 Readily int	Ity organic solla. d mbture with clay binder. FIELD TEST etrated several inches by Thumb. through fingers. terated 1 " by Thumb , Molded by pressure. I over 1/2 " by Thumb with moera ided by strong finger pressure. I over 1/2 " by Thumb but penetral reat effort tented by Thumb all		
NERA 1 gen hhe lo ual de ines s nodari ogs r xxplor lo wa ween G KE	Nicked eye) High Roundary closeffications All seve sizes on the AL NOTES eral, Unified Soil Class gas were evaluated by v esignations (based on separating strata on th les only Actual transiti represent general soil of represent general soil of ration onthe date indice tranty is provided as to individual sample loca	s-Soïs possessing charactes chart are U.S. standard. sification Designations pre visual methods only. There laboratory testing) may di ne logs represent approxim lons may be gradual. conditions observed at teh lated.	sented e rore, Iter. nate n point nditions	Readily Identif frequently t	very slow led by color, odor, y fibrous texture. I by combination FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard	ED SOIL (SPT (blows ft) <2 2 - 4 4 - 8 8 - 15	TORVANE UNDRAINED SHEAR STRENGTH (ISI) <0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0	Pt POCKI PENETROI UNCONF COMPRE: STRENGT <0.2! 0.25 - 1 0.5 - 1 1.0 - 2	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi 1 Indented a only with (0.0 Readily int	Ity organic solls. 3 mbture with elay binder. FIELD TEST etrated several inches by Thumb. hrough fingers. terated 1 " by Thumb , Molded by 'pressure. over 12 " by Thumb with moeral fed by strong finger pressure. bout 12 " by Thumb but penetrat reat effort		
In the logical definition of the logical def	Nicked eye) High Boundary, clossifications All aleve sizes on this AL NOTES eral, Unified Soil Class gas were evaluated by selignations (based on separating strata on th les only Actual transiti represent general soil realion onthe date indic irranty is provided as to Individual sample loca EV SYMBOLS Bulk / Bag Sample	s -Solia possessing charactes chart are U.S. standard. silication Designations pre- visual methods only. There laboratory testing) may dit ne logs represent approxim ions may be gradual. conditions observed at teh sated. to the continuity of soli con ations.	sented e rore, Iter. nate n point nditions	Readily Identifi frequently I ps one designated	very slow very slow of throus texture. d by combinction FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Very Stiff Hard L RELATIVE	medium spongy feel and is of group symbols. ED SO(L (SPT (blows ft) <2	TORVANE UNDRAINED SHEAR STRENGTH (151) <0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0	Pt POCKI PENETROI UNCONF COMPRE: STRENGT <0.22 0.25 -1 0.5 - 1 1.0 - 2 2.0 - 4	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi 1 Indented a only with (0.0 Readily int	Ity organic solla. I mbdure with cloy binder. FIELD TEST Errated several Inches by Thumb. through fingers. terrated 1 " by Thumb , Molded by pressure. Iover 1/2 " by Thumb with meera field by strong finger pressure. bout 1/2 " by Thumb with meera ted by strong finger pressure. bout 1/2 " by Thumb but penetrat reat effort Jented by Thumbnall th difficulty by Thumbnall		
NER/ in genuties lo ual de indarl de indarl de xyplor lo wa ween og KE	Nicked eye) High Boundary clossifications All news sizes on this AL NOTES eral, Unified Soil Classs gas were evaluated by esignations (based on seperating strate on th les only Actual transiti represent general soil i ration on the date indicu rrantly is provided as to Individual sample loca	s -Solia possessing charactes chart are U.S. standard. silication Designations pre- visual methods only. There laboratory testing) may dit ne logs represent approxim ions may be gradual. conditions observed at teh sated. to the continuity of soli con ations.	sented e rore, fter. nate n point nditions COARSE APPERE DENST	Readily Identifi frequently I ps are designated are designated ps Try SPT (slows:ft)	Very slow Very slow of throus texture. d by combination FINE - GRAIN CONSISTENCY Very Solt Soft Medium Stiff Very Stiff Very Stiff Hard L RELATIVE DENSITY (*s)	medium spongy feel and a of group symbols. ED SOIL / SPT (blows ft) <2	TORVANE UNDRAINED SHEAR STRENGTH (ISI) <0.125 0.25 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0 EST	Pt POCKI PENETROI UNCONF COMPRE: STRENGT 0.25 -1 0.5 -1 1.0 -2 2.0 -4 >4.0	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	Ity organic solfa. I mixture with clay binder. FIELD TEST Effect of the solution of the sol		
NERA n genn the lo ual de indari .ogs r xxplor lo wa ween OG KE	Nicked eye) High Boundary closelfications All aleve sizes on this AL NOTES eral, Unified Soil Class graver evaluated by v esignations (based on seperating strata on th iss only Actual transit represent general soil (ation onthe date indice tranty is provided as to Individual sample loca EV SYMBOLS Bulk / Bag Sample Standard Penetration	s -Solia possessing charactes chart are U.S. standard. allication Designations pre- visual methods only. There laboratory testing) may dif he logs represent approxim fons may be gradual. conditions observed at teh ated. to the continuity of soil con allons. Thin Wall	sented e rore, Iter. nate n point nditions	Readily Identify frequently I pr ore designated set SPT SPT (blows (t) DSE <4	Very slow Very slow P (lifeous texture, d by combinction FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (%) 0 - 15 p 15 - 35 rr	redum spongy feel and is of group symbols. ED SO(L (SPT (blows.ft) (clows.ft) (clows.ft	TORVANE UNDRAINED SHEAR STRENGTH (151) <0,125 0,25 - 0,25 0,25 - 0,5 0,5 - 1,0 1,0 - 2,0 >2,0 EST ith 1/2 " relator ed with 1/2 " relator	Pt POCKI POCKI PENETROI UNCONF COMPRE: STRENGT <0.2: 0.25 -1 1.0 -2 2.0 -4 >4.0 cing rod	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	tly organic solla. a mbrture with elay binder. FIELD TEST etrated several inches by Thumb. through fingers. terated 1 " by Thumb of the by pressure. over 12 " by Thumb with moeral fed by strong finger pressure. bout 12 " by Thumb but penetrat reat effort tented by Thumbnall th difficulty by Thumbnall STRATIFICATION DESCRIPTION THICKNESS SEAM 1/16 - 1/2 " LAYER 1/2 - 12 " DESCRIPTION THICKNESS		
INERA In genn the lo ual de ines ines indari cogs r explor No wa ween OG KE I I I I I I I I I I I I I	Nicked eye) High Boundary closelfications All news sizes on this AL NOTES eral, Unified Soil Classs gas were evaluated by essignations (based on separating strata on th les only Actual transiti represent general soil i ration onthe date indica rranty is provided as to individual sample loca EY SYMBOLS Bulk / Bag Sample Standard Penetration Split Spoon Sampler	s-Soïs possessing charactes chart are U.S. standard.	sented e rore, fter. nate n point nditions COARSE APPERE DENST Very Lo	Readily identify frequently i pp or designate endesignate space designate space des designate space designate space des designate space des designate space des des des des des des des des des de	Very slow led by codor, odor, y fibrous texture. FINE - GRAIN FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (*s) 0 - 15 E 35 - 65 r r 25 - 65 r	redum spongy feel and a of group symbols. ED SOIL / SPT (blows ft) 2 2 2 - 4 4 - 8 8 - 15 15 - 30 30 FIELD TE Easily penetrated w usubled by hand Hiffoult to penetrate all Hiffoult to penetrated a eInforcing red drive	TORVANE UNDRAINED STREAR STREAR 0.125 0.125 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0 EST ith 1.2 " reinfor ed with 1/2 " rei foot with 1/2 " rei	Pt POCKI POCKI PENETROI UNCONF COMPRE: STRENGT <0.2 0.25 -1 1.0 -2 2.0 -4 >4.0 cing rod nforcing nmer '2"	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	ty organic solls.		
NERA n gen the lo ual de indari .ogs r explor to wa ween OG KE	Nicked eye) High Boundary closelfications All news sizes on this AL NOTES eral, Unified Soil Classs gas were evaluated by essignations (based on separating strata on th les only Actual transiti represent general soil i ration onthe date indica rranty is provided as to individual sample loca EY SYMBOLS Bulk / Bag Sample Standard Penetration Split Spoon Sampler	ar -Solis possessing charactes chart are U.S. standard. sification Designations pre- visual methods only. There laboratory testing) may dif- the logs represent approxim- lons may be gradual. conditions observed at teh- tated. to the continuity of soil con- ations. Thin Wall Thin Wall And Recovory	sented e rore, fter. nate n point nditions COARSE APPERE DENST Very Lo Loosi Medium D	E-GRAINDE SOI ENT SPT TV (blows/t) ose <4 e 4 - 10 tense 10 - 30 e 30 - 50	Very slow Very slow Py fibrous texture. I by combinction FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (*s) 0 - 15 5 15 - 35 77 35 - 65 77 57 - 85 77 77 77 77 77 77 77 77 77 7	redum spongy feel and as of group symbols. ED SO(L Contemporation of group symbols) ED SO(L Contemporation of group symbols) Contemporation of group symbols FIELD TE Casily penetrated w usahed by hand casily penetrated w	TORVANE UNDRAINED SHEAR STRENGTH (150) <0.125 0.25 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0 EST ith 1/2 " relator foot with 1/2 " rel foot with 1/2 " rel foot with 1/2 " rel foot with 1/2 " rel foot with 5/b har	Pt POCKI PENETROI UNCONF COMPRESISTRENGT <0.25 -1 0.5 -1 1.0 -2 2.0 -4 >4.0 cing rod nforcing nmer (2" nmer (2"	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	tly organic solla. 3 mbrture with clay binder. FIELD TEST etrated several inches by Thumb. through fligers. terated 1 " by Thumb suth moera fed by strong fliger pressure. bout 1/2 " by Thumb but penetral reat effort tented by Thumbnall tht difficulty by Thumbnall STRATIFICATION DESCRIPTION THICKNESS SEAM 1/16 -1/2 " LAYER 1.2 + 12 " DESCRIPTION THICKNESS Occasional One or less per fore of thickness Frequent More than on pe		
NERA n genthe lo ual de Lines a sxplor lo wa ween OG KE I I I I I I I I I I I I I I I I I I I	NIGH Roundary closelfootlone All aleve sizes on this AL NOTES eral, Unified Soil Class graver evaluated by vestigations (based on separating strata on the iso noty Actual transit iso noty Actual transit represent general soil (a irranty is provided as to Individual sample loca EV SYMBOLS Bulk / Bag Sample Standard Penetration Split Spoon Sampler Rock Core Acter Level TION	ar-Sole possessing charactes chart are U.S. standard. stification Designations pre- visual methods only. There laboratory testing) may dif- the logs represent approxim- lons may be gradual. conditions observed at teh- tated. to the continuity of soil con- ations. Thin Wall Mo Recovory J. 3-3/4" ID D&M Sampler J. 3" ID D&M Sampler California Sampler	sented e rore, fter. nate n point nditions COARSE APPERE DENSI Very Lo Loosi Medium D Densi	E-GRAINDE SOI ENT SPT TV (blows/t) ose <4 e 4 - 10 tense 10 - 30 e 30 - 50	very slow very slow py fibrous texture. d by combination FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (**) 0 - 15 E 15 - 35 Dr 15 - 35 Dr 35 - 65 Fr 65 - 85 rr	redum spongy feel and so of group symbols. ED SO(L (SPT (blows ft) (clows ft) 2 - 4 4 - 8 8 - 15 15 - 30 3 - 30 FIELD TE Easily penetrated w usahed by hand elhorcing red driv olfficult to penetrated drive)	TORVANE UNDRAINED SHEAR STRENGTH (151) <0.125 0.125 - 0.25 0.25 - 0.25 0.25 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0 EST ith 1/2 " relator ed with 1/2 " rel foot with 1/2 " rel	Pt POCKI PENETROI UNCONF COMPRESISTRENGT <0.25 -1 0.5 -1 1.0 -2 2.0 -4 >4.0 cing rod nforcing nmer (2" nmer (2"	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	tly organic solla. 3 mbrture with elay binder. FIELD TEST etrated several inches by Thumb. through fingers. terated 1 " by Thumb with moeral fed by strong finger pressure. bout 1/2 " by Thumb but penetrat reat effort tented by Thumbnall tht difficulty by Thumbnall STRATIFICATION DESCRIPTION THICKNESS SEAM 1/16 - 1/2 " LAYER 1/2 + 12 " DESCRIPTION THICKNESS Occasional One of less per fore of thickness Frequent More than on pe		
INERA In generative local Inession and and and and and and and and and an	Nicked eye) High Roundary closelfications All aleves sizes on the AL NOTES eral, Unified Soil Class grawer evaluated by v essignations (based on seperating strata on th ise only Actual transiti represent general soil i ration onthe date indic rration onthe date indic rra	s-Solis possessing charactes chart are U.S. standard.	sented e rore, fter. nate n point nditions COARSE APPERE DENSI Very Lo Loosi Medium D Densi Very De	Readily Identify frequently I pr or designate are designate e - GRAINDE SOI ENT SPT (blows:ft) ose <4 e 4 - 10 lense 10 - 30 e 30 - 50 MODIFIERS DESCRIPTIO	Very slow Very slow Pilkous texture. I by combinction FINE - GRAIN CONSISTENCY Very Solt Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (*s) 0 - 15 p 15 - 35 rr 35 - 65 rr 85 - 100 rr 1	redum spongy feel and spongy feel and so of group symbols. ED SOIL C SPT (blows ft) C 2 2 - 4 4 - 8 8 - 15 15 - 30 > 30 FIELD TE Easily penetrated w usahed by hand casily penetrated w usahed by hand elinotroling rod driv Prenetrated only a fe einforcling rod driv MOISTURE CONTE DESCRIPTION	TORVANE UNDRAINED SHEAR STRENGTH (191) <0,125 0,25 - 0,25 0,25 - 0,25 - 0,25 0,25 - 0,25 - 0,25 0,25 - 0,25	Pt POCKI PENETRON UNCONF COMPRESITENT 0.25 -1 0.5 -1 1.0 -2 2.0 -4 >40.0 cing rod nforcing nmer 1/2 " nmer 1/2 " nmer	Peat and other high ground growel—son ET METER NINED SSIVE 1 (197) 5 Easily pen Easily p	tly organic solla. 3 mbrture with elay binder. FIELD TEST etrated several inches by Thumb. through fingers. terated 1 " by Thumb sholded by "pressure. toout 12" by Thumb with moeral fed by strong finger pressure. bout 12" by Thumb but penetrat reat effort fented by Thumbnall STRATIFICATION DESCRIPTION THICKNESS SEAM 1/16 - 1/2" LAYER 1/2 - 12" DESCRIPTION THICKNESS Occasional One or less per foot of thickness Frequent More than on pe foot of thickness		
INERA n gen the lo ual de Lines a undarl cogs r explor No wa ween OG KE	Nicked eye) High Roundary closelifications All aleves sizes on the AL NOTES eral, Unified Soil Class grawere evaluated by v essignations (based on seperating strata on th ise only Actual transiti represent general soil i ration onthe date indic rranty is provided as te Individual sample locat EV SYMBOLS Bulk / Bag Sample Standard Penetration Spilt Spoon Sampler Rock Core Kater Level TiON DESCRIPTIOI Y Crumbles or brea	ar-Sole possessing charactes chart are U.S. standard. stification Designations pre- visual methods only. There laboratory testing) may dif- the logs represent approxim- lons may be gradual. conditions observed at teh- tated. to the continuity of soil con- ations. Thin Wall Mo Recovory J. 3-3/4" ID D&M Sampler J. 3" ID D&M Sampler California Sampler	sented e rore, fter. nate n point nditions COARSE APPERE DENST Very Lo Loos Medium D Dens Very De	Readily Identify frequently par are designated par are designated part are designated	Very slow Very slow Plike a dar, adar, y fibrous texture. FINE - GRAIN CONSISTENCY Very Soft Soft Medium Stiff Very Stiff Hard L RELATIVE DENSITY (**) 0 - 15 5 35 - 65 rr 85 - 100 P	redum spongy feel and spongy feel and so of group symbols. ED SO(L (SPT (blows ft) (clows ft) 2 - 4 4 - 8 8 - 15 15 - 30 > 30 FIELD TE Easily penetrated w usahed by hand Fifeut to penetrate einforcing red driv MOISTURE CONTER DESCRIPTION Dry	TORVANE UNDRAINED SHEAR STRENGTH (191) <0,125 0,25 - 0,25 0,25 - 0,25 - 0,25 0,25 - 0,25 - 0,25 0,25 - 0,25	Pt POCKI PENETROI UNCONF COMPRESISTNENAT <0.22 0.25 -1 0.5 -1 1.0 -2 2.0 -4 >4.0 constant streng of the strength of the strength of the strength of the strength of the strength of the strength stre	Peat and other high groded grovel-son METER INED SSIVE H (tar) 5 Easily pen Squeezes 0.5 Easily pen Hight finge 0.5 Penetrate effort. Moi .0 Indented a only with c	tly organic solla. 3 mbrture with elay binder. FIELD TEST etrated several inches by Thumb. through fingers. terated 1 " by Thumb sholded by "pressure. toout 12" by Thumb with moeral fed by strong finger pressure. bout 12" by Thumb but penetrat reat effort fented by Thumbnall STRATIFICATION DESCRIPTION THICKNESS SEAM 1/16 - 1/2" LAYER 1/2 - 12" DESCRIPTION THICKNESS Occasional One or less per foot of thickness Frequent More than on pe foot of thickness		

ROCKWORTH COMPANIES JOB NO. 528-005-20

#1 Looking south.

#2 Looking east/southeast.

#3 Looking east.

#4 Looking north.

FIGURE 6 PHOTOGRAPHS

Locations and direction, see Figure 2, Area Map

APPENDIX A

Geologic Hazards Study Report

REPORT

GEOLOGIC HAZARDS EVALUATION AJ ROCK LLC PROPERTY 6695 SOUTH WASATCH BOULEVARD COTTONWOOD HEIGHTS, UTAH

Prepared for

GORDON GEOTECHNICAL ENGINEERING, INC. Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

May 11, 2020

Prepared by

Western Geologic & Environmental LLC 2150 South 1300 East, Suite 500 Salt Lake City, UT 84106 USA

Voice: 801.359.7222 Fax: 801.990.4601 Web: www.westerngeologic.com

WESTERN GEOLOGIC & ENVIRONMENTAL LLC

2150 South 1300 East, Suite 500 Salt Lake City, Utah 84106 USA

Phone: 801.359.7222

Fax: 801.990.4601

Email: kthomas@westerngeologic.com

May 11, 2020

Patrick R. Emery – Principal Engineer Gordon Geotechnical Engineering, Inc. 4426 South Century Drive, Suite 100 Salt Lake City, Utah 84123

Letter of Transmittal: REPORT Geologic Hazards Evaluation AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

Dear Mr. Emery:

Western Geologic & Environmental has completed a Geologic Hazards Evaluation for the AJ Rock LLC Property at 6695 South Wasatch Boulevard in Cottonwood Heights, Utah and submits the attached report for your review.

If you have any questions regarding this report, please contact us at (801) 359-7222.

Sincerely, Western Geologic & Environmental LLC

Bill. D. Black, P.G. Subcontract Geologist

Reviewed By:

Kevin J. Thomas, P.G. Principal Geologist

C:\Users\GLENDA\Documents\WG&E\PROJECTS\Gordon Geotechnical Engineering, Inc\Cottonwood Height, UT - Geo Haz Eval - 6695 South Wasatch Boulevard #5342\Geo Haz Eval - AJ Rock LLC Property - 6695 S Wasatch Blvd - Cottonwood Heights, UT.docx

WG&E Project No. 5342

Copyright 2020 by Western Geologic & Environmental LLC, All rights reserved. Reproduction in any media or format, in whole or in part, of any report or work product of Western Geologic & Environmental LLC, or its associates, is prohibited without prior written permission.

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	PURPOSE AND SCOPE	. 1
2.1	Methodology	.1
2.2	Limitations and Exceptions	.2
3.0	GEOLOGY	.3
3.1	Surficial Geology	.3
3.2	Seismotectonic Setting	. 5
4.3	Lake Bonneville History	
4.0	SITE CHARACTERIZATION	.7
4.1	Empirical Observations	.7
4.2	Air Photo Observations	.7
4.3	Subsurface Investigation	.8
4.4	Cross Sections	10
5.0	GEOLOGIC HAZARDS	11
5.1	Earthquake Ground Shaking	11
5.2	Surface Fault Rupture	12
5.3	Liquefaction and Lateral-Spread Ground Failure	16
5.4	Tectonic Deformation	16
5.5	Seismic Seiche and Storm Surge	17
5.6	Stream Flooding	17
5.7	Shallow Groundwater	17
5.8	Landslides and Slope Failures	17
5.9	Debris Flows	18
5.10		
5.11		
6.0	CONCLUSIONS AND RECOMMENDATIONS	19
7.0	REFERENCES	21

FIGURES

Figure 1. Location Map (8.5"x11") Figure 2. Geologic Map (8.5"x11") Figure 3A. 1938 Air Photo (11"x17") Figure 3B. 1970 Air Photo (11"x17") Figure 3C. 1993 Air Photo (11"x17" Figure 3D. 2012 Air Photo (11"x17") Figure 3E. 2013 LIDAR Image (11"x17") Figure 4. Site Plan (11"x17") Figures 5A-B. Trench 1 Log (two 11"x17" sheets) Figures 6A-D. Trench 2 Log (four 11"x17" sheets) Figures 7A-C. Trench 3 Log (three 11"x17" sheets) Figures 8A-C. Trench 4 Log (three 11"x17" sheets) Figures 9A-E. Trench 5 Log (five 11"x17" sheets) Figures 10A-C. Trench 6 Log (three 11"x17" sheets) Figures 11A-B. Trench 7 Log (two 11"x17" sheets) Figures 12A-E. Trench 8 Log (five 11"x17" sheets) Figures 13A-C. Trench 9 Log (three 11"x17" sheets) Figure 14. Cross Section A-A' (11"x17") Figure 15. Cross Section B-B' (11"x17") Figure 16. Cross Section C-C' (11"x17")

1.0 INTRODUCTION

This report presents the results of a geology and geologic hazards review and evaluation conducted by Western Geologic & Environmental LLC (Western Geologic) for the AJ Rock LLC property at roughly 6695 South Wasatch Boulevard in Cottonwood Heights City, Utah (Figure 1 – Project Location). The site is in eastern Salt Lake Valley at the western base of the Wasatch Range north of Big Cottonwood Canyon, in the SE¹/₄ Section 23, Township 2 South, Range 1 East (Salt Lake Base Line and Meridian). Elevation of the site is about 4,820 to 5,010 feet above sea level. The site has been an active gravel mining operation since the mid-1950s and considerable material (up to 100 feet or more in the eastern part) has been removed. Much of the site is mantled by fill of varying thicknesses from gravel mining operations. Based on an April 24, 2020 McNeil Engineering conceptual grading plan, the site is currently proposed for mixed-used development by five commercial buildings, a hotel, a large apartment building, a condominium tower, a senior living center, various ancillary parking areas and re-alignment of Wasatch Boulevard.

2.0 PURPOSE AND SCOPE

The purpose and scope of this investigation is to identify and interpret surficial geologic conditions at the site to identify potential risk from geologic hazards to the Project. This investigation is intended to: (1) provide preliminary geologic information and assessment of geologic conditions at the site; (2) identify potential geologic hazards that may be present and qualitatively assess their risk to the intended site use; and (3) provide recommendations for additional site- and hazard-specific studies or mitigation measures, as may be needed based on our findings. Such recommendations could require further multi-disciplinary evaluations, and/or may need design criteria that are beyond our professional scope. Our investigation was conducted concurrently with a geotechnical engineering study performed at the Project by Gordon Geotechnical.

Maps included in Appendix A of the Cottonwood Heights City's Sensitive Lands Evaluation & Development Standards (SLEDS; Cottonwood Heights City Municipal Code Title 19, Chapter 19.72) show the property is located in Surface Fault Rupture Study Area (Map 1), a "High" Slope Stability Hazard Area (Map 2), a "Very Low" Liquefaction Hazard Area (Map 3), a "Low" Debris Flow Hazard Area (Map 4), and a "Moderate" Rock Fall Hazard Area (Map 5). Appendix A, Map 10, provides a surficial geologic map based on U.S. Geological Survey Map I-2106 (Personius and Scott, 1992), which is incorporated into Personius and Scott (2009).

2.1 Methodology

The following services were performed in accordance with the above-stated purpose and scope:

• A site reconnaissance conducted by an experienced certified engineering geologist to assess the site setting and look for adverse geologic conditions;

- Review of readily-available geologic maps, reports, and air photos;
- Logging of eight exploratory trenches at the site in 2009 and one trench in 2020 to identify the presence and location of any active faults, assess zones of fault-related deformation, and recommend appropriate fault set-back distances and safe "buildable" areas should faults be discovered;
- Preparation of three cross section profiles based on site-specific subsurface data and inferred conditions; and
- Evaluation of available data and preparation of this report, which presents the results of our study.

The engineering geology section of this report has been prepared in accordance with Bowman and Lund (2016), current generally accepted professional engineering geologic principles and practice in Utah, and the Cottonwood Heights City SLEDS. However, we do not include discussion of radon hazard potential, as recommended in Bowman and Lund (2016), because radon gas poses an environmental health hazard and indoor levels are heavily influenced by several post-construction, non-geologic factors. The hazard from radon should be evaluated by long-term testing following construction.

2.2 Limitations and Exceptions

This investigation was performed at the request of the Client using the methods and procedures consistent with good commercial and customary practice designed to conform to acceptable industry standards. The analysis and recommendations submitted in this report are based upon the data obtained from site-specific observations and compilation of known geologic information. This information and the conclusions of this report should not be interpolated to adjacent properties without additional site-specific information. In the event that any changes are later made in the location of the proposed site, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or approved in writing by the engineering geologist.

This report has been prepared by the staff of Western Geologic for the Client under the professional supervision of the principal and/or senior staff whose seal(s) and signatures appear hereon. Neither Western Geologic, nor any staff member assigned to this investigation has any interest or contemplated interest, financial or otherwise, in the subject or surrounding properties, or in any entity which owns, leases, or occupies the subject or surrounding properties or which may be responsible for environmental issues identified during the course of this investigation, and has no personal bias with respect to the parties involved.

The information contained in this report has received appropriate technical review and approval. The conclusions represent professional judgment and are founded upon the findings of the investigations identified in the report and the interpretation of such data based on our experience and expertise according to the existing standard of care. No other warranty or limitation exists, either expressed or implied.

The investigation was prepared in accordance with the approved scope of work outlined in our proposal for the use and benefit of the Client; its successors, and assignees. It is based, in part, upon documents, writings, and information owned, possessed, or secured by the Client. Neither this report, nor any information contained herein shall be used or relied upon for any purpose by any other person or entity without the express written permission of the Client. This report is not for the use or benefit of, nor may it be relied upon by any other person or entity, for any purpose without the advance written consent of Western Geologic.

In expressing the opinions stated in this report, Western Geologic has exercised the degree of skill and care ordinarily exercised by a reasonable prudent environmental professional in the same community and in the same time frame given the same or similar facts and circumstances. Documentation and data provided by the Client, designated representatives of the Client or other interested third parties, or from the public domain, and referred to in the preparation of this assessment, have been used and referenced with the understanding that Western Geologic assumes no responsibility or liability for their accuracy. The independent conclusions represent our professional judgment based on information and data available to us during the course of this assignment. Factual information regarding operations, conditions, and test data provided by the Client or their representative has been assumed to be correct and complete. The conclusions presented are based on the data provided, observations, and conditions that existed at the time of the field exploration.

3.0 GEOLOGY

3.1 Surficial Geology

Utah Geological Survey Map 243DM (Surficial geologic map of the Salt Lake City segment and parts of adjacent segments of the Wasatch fault zone, Davis, Salt Lake, and Utah Counties, Utah; Personius and Scott, 2009) maps the site in an area underlain by Bells Canyon glacial outwash; and clay, silt, sand, and gravel related to the transgressive stage of Lake Bonneville. Two main, west-dipping traces of the active Salt Lake City section of the WFZ are mapped by Personius and Scott (2009) diverging from a single trace southeast of the site into two northwest-trending en-echelon traces that cross the Project. A third main west-dipping trace is mapped by Personius and Scott (2009) near the northeastern site corner.

More-recent, 1:24,000-scale mapping by McKean (2018) and McKean and Solomon (2018) is provided on Figure 2. McKean (2018) shows the Project straddles a broad zone of fault deformation bounded by two west-dipping main traces of the WFZ on the east and west, with a third partly concealed west-dipping trace crossing the site (Figure 2). All these fault traces diverge from a single trace further south similar to Personius and Scott (2009). McKean (2018) maps the site in an area underlain by Holocene to upper Pleistocene stream deposits, upper Pleistocene deltaic deposits related to the Bonneville shoreline and

transgressive phase of Lake Bonneville, and lacustrine gravel and sand of similar provenance (units Qaly, Qdlb and Qlgb; Figure 2). McKean (2018) describes these units as follows:

Qaly – Young stream deposits, undivided (Holocene to upper Pleistocene). Poorly to moderately sorted pebble and cobble gravel, locally bouldery, with a matrix of sand and silt; mapped in channels and active floodplains of Big Cottonwood, Parleys, Emigration, and Mill Creeks and small creeks; locally includes small alluvial-fan and colluvial deposits; includes level-2 stream deposits (Qal2) incised by active streams with level-1 stream deposits (Qal1); Qal1 and Qal2 deposits cannot be mapped separately, due to lack of bars and swales and because patches of deposits are too small to show separately at map scale; postdates regression of Lake Bonneville from the Provo shoreline and lower shorelines; thickness variable, probably less than 30 feet (10 m).

Deposits related to the Bonneville shoreline and transgressive phase of Lake

Bonneville: Mapped between the Bonneville and Provo shorelines. The Bonneville shoreline is at elevations from about 5160 to 5230 feet (1570–1595 m) in the Sugar House quadrangle (table 1).

Qldb – Deltaic deposits, undivided (upper Pleistocene). Moderately to well-sorted gravel and sand, locally including thin beds of silt and sandy silt; clasts subrounded to rounded; thin to thick planar and cross-bedded foreset beds; locally includes topset alluvial beds; locally weakly cemented with calcium carbonate; undivided (Qldb) where exposed in bluffs between streams or below terraces, subdivided into a gravelly unit (Qldbg) where delta contains clast-supported, pebble and cobble gravel in a matrix of sand and silt; present near the mouth of Big Cottonwood Canyon; previously mapped near the mouth of Big Cottonwood Canyon age by Personius and Scott (1992; gbco), but mapped here as deltaic based on the delta fan-shape and moderately to well-sorted, well-rounded gravel and sand in planar and foreset beds exposed in sand and gravel pits; exposed thickness less than 130 feet (40 m).

Qlgb – Lacustrine gravel and sand (upper Pleistocene). Moderately to well-sorted, clastsupported, pebble to cobble gravel, with boulders near bedrock sources, with a matrix of sand and pebbly sand; locally interbedded with thin beds and lenses containing silt and clay; clasts commonly subrounded to rounded, but some deposits consist of poorly sorted, angular gravel derived from nearby bedrock outcrops; deposited between the Bonneville and Provo shorelines in planar and cross-bedded beds; typically overlies bedrock near the foot of the Wasatch Range; commonly covered by unmapped colluvium from adjacent steep slopes on erosional benches at the Bonneville shoreline; this colluvium is thin and does not cover the benches; exposed thickness less than 75 feet (25 m).

Citations, tables and/or figures referenced above, and descriptions of nearby surficial geologic units shown on Figure 2 are not provided herein but are in McKean (2018).

3.2 Seismotectonic Setting

The property is located in Salt Lake Valley at the western base of the Wasatch Range about 1.1 miles northwest of the mouth of Big Cottonwood Canyon. Salt Lake Valley is a deep, sediment-filled structural basin of Cenozoic age that is bounded by two uplifted range blocks, the Oquirrh Mountains and the Wasatch Range (to the west and east, respectively). The valley lies at the eastern edge of the Basin and Range physiographic province (Stokes, 1977, 1986). The Basin and Range province is characterized by a series of generally north-trending elongate mountain ranges, separated by predominately alluvial and lacustrine sediment-filled valleys and typically bounded on one or both sides by major normal faults (Stewart, 1978). The boundary between the Basin and Range and Middle Rocky Mountains provinces is the prominent, west-facing escarpment along the Wasatch fault zone at the western base of the Wasatch Range. Late Cenozoic normal faulting, a characteristic of the Basin and Range, began between about 17 and 10 Ma (million years ago) in the Nevada (Stewart, 1980) and Utah (Anderson, 1989) portions of the province. The faulting is a result of a roughly east-west directed, regional extensional stress regime that has continued to the present (Zoback and Zoback, 1989; Zoback, 1989).

The Wasatch fault zone (WFZ) is one of the longest and most active normal-slip faults in the world and extends for 213 miles along the western base of the Wasatch Range from southeastern Idaho to north-central Utah (Machette and others, 1992). The fault zone generally trends north-south and, at the surface, can form a zone of deformation up to several hundred feet wide containing many subparallel west-dipping main faults and east-dipping antithetic faults. Previous studies divided the fault zone into 10 sections, each of which rupture independently and are capable of generating large-magnitude surface-faulting earthquakes (Machette and others, 1992). The central five sections of the fault (Brigham City, Weber, Salt Lake, Provo, and Nephi) have each produced two or more surface-faulting earthquakes in the past 6,000 years (Black and others, 2003). The site is located along the active Salt Lake City section of the WFZ, which trends across the heavily populated east side of Salt Lake Valley. The Salt Lake City section is further divided into three subsections (from north to south): Warm Springs, East Bench, and Cottonwood. The site is located at the northern end of the Cottonwood (southernmost) subsection.

Personius and Scott (2009) and McKean (2018; Figure 2) map three main traces of the WFZ that bound and/or cross the site and trend generally northward. The faults form a broad zone of en-echelon, down-to-the-west faulting from 700 to 1,200 feet wide on which the site is situated. The Working Group on Utah Earthquake Probabilities (2016; Table 4.1-1) indicates mean timing $(+2\sigma)$ for the last four surface-faulting earthquakes on the Salt Lake City section is: (1) 1,300 + 200 years, (2) 2,200 + 200 years, (3) 4,100 + 300 years, and (4) 5,300 + 200 years. The Working Group on Utah Earthquake Probabilities (2016; Table 4.1-2) indicates a closed mean recurrence interval for the Salt Lake City section, based on timing for the last four surface-faulting earthquakes, of 1,300 + 100 years.

The site is also in the central portion of the Intermountain Seismic Belt (ISB), a generally north-south trending zone of historical seismicity along the eastern margin of the Basin and Range province extending from northern Arizona to northwestern Montana (Sbar and others, 1972; Smith and Sbar, 1974). At least 16 earthquakes of magnitude 6.0 or greater have occurred within the ISB since 1850; the largest of these earthquakes was a M 7.5 event in 1959 near Hebgen Lake, Montana. None of these earthquakes occurred along the Wasatch fault or other known late Quaternary faults (Arabasz and others, 1992; Smith and Arabasz, 1991). The closest event was the 1934 Hansel Valley (M 6.6) event north of the Great Salt Lake. The March 18, 2020 M 5.7 earthquake north of Magna, Utah reportedly showed a style, location, and slip depth consistent with an earthquake on the Wasatch fault system (https://earthquake.usgs.gov/earthquakes/eventpage/uu60363602/executive). Despite being moderate in size (less than magnitude 6.0), this earthquake was felt from southern Idaho to south-central Utah and caused serious damage to multiple buildings (https://www.ksl.com/article/46731630/).

3.3 Lake Bonneville History

Lakes occupied nearly 100 basins in the western United States during late-Quaternary time, the largest of which was Lake Bonneville in northwestern Utah. The Bonneville basin consists of several topographically closed basins created by regional extension in the Basin and Range (Gwynn, 1980; Miller, 1990), and has been an area of internal drainage for much of the past 15 million years. Lake Bonneville consisted of numerous topographically closed basins, including the Salt Lake and Cache Valleys (Oviatt and others, 1992). Sediments from Lake Bonneville comprise much of the unconsolidated deposits in the site vicinity.

Timing of events related to the transgression and regression of Lake Bonneville are indicated in Oviatt (2015). Approximately 30,000 years ago, Lake Bonneville began a slow transgression (rise) to its highest level of 5,160 to 5,200 feet above mean sea level. The lake rise eventually slowed as water levels approached an external basin threshold in northern Cache Valley at Red Rock Pass near Zenda, Idaho. Lake Bonneville reached the Red Rock Pass threshold and occupied its highest shoreline, termed the Bonneville beach, around 18,000 years ago. Headward erosion of the Snake River-Bonneville basin drainage divide, possibly combined with landsliding in the threshold area, then caused a catastrophic incision that caused the lake level to lower by about 425 feet in less than a year (Jarrett and Malde, 1987; O'Conner, 1993). Following the Bonneville flood, the lake stabilized and formed a lower shoreline referred to as the Provo shoreline up to about 16,000 years ago. Climatic factors then caused the lake to regress rapidly from the Provo shoreline, and by about 13,000 years ago the lake had eventually dropped below historic levels of Great Salt Lake. Oviatt and others (1992) deem this low stage the end of the Bonneville lake cycle. Great Salt Lake then experienced a brief transgression between 12,800 and 11,600 years ago to the Gilbert level at about 4,250 feet before receding to and remaining within about 20 feet of its historic average level (Lund, 1990; Oviatt, 2015). The site is located slightly above the Provo shoreline, but below the highest Bonneville shoreline.

Glaciers in Little Cottonwood and Bells Canyons advanced into eastern Salt Lake Valley from the Wasatch Range between 26,000 and 18,000 years ago (Personius and Scott, 1992, 2009). Lake Bonneville was in its transgressive stage during this time, but stood at an intermediate level prior to reaching its highest Bonneville shoreline. Till deposited by the glaciers formed prominent moraines extending into the valley, and meltwater from glaciers in Bells Canyon and Little and Big Cottonwood Canyons deposited gravelly outwash fans along the range front (Personius and Scott, 1992). The site is partly mapped in outwash deposits from Big Cottonwood Canyon (unit gbco, Figure 2). As Lake Bonneville continued rising, the glaciers retreated up their respective valleys, the outwash deposits were eventually inundated by the lake, and deposition continued in deltas extending into the lake. When Lake Bonneville receded, the deltas and outwash deposits were downcut and eroded by Big and Little Cottonwood Creeks.

4.0 SITE CHARACTERIZATION

4.1 Empirical Observations

On March 25-26, 2020, Mr. Bill D. Black of Western Geologic conducted a brief reconnaissance of the property to observe geomorphic and surficial conditions. The reconnaissance was conducted in conjunction with additional subsurface investigation in the northern part of the site. Weather on March 25 was cloudy with snow and temperatures in the 30's (°F). The site is in eastern Salt Lake Valley at the western base of the Wasatch Range north of Big Cottonwood Canyon and has been an active gravel mining operation since the mid-1950s. Considerable material has been removed in the fault zone by gravel mining, with subvertical cut slopes a hundred feet high or more in this area. Much of the site is mantled by fill of varying thicknesses from gravel mining operations. The gravel pit was not in operation at the time of our reconnaissance, but was active when most of the trenching was conducted at the site in 2009. No springs or seeps were observed at the Project and no evidence for characteristic debris-flow features, landslides, recent or ongoing slope instability, rock fall source areas, or other geologic hazards was observed to the extent that surface areas at the Project could be accessed and viewed.

4.2 Air Photo Observations

Figure 3A shows a 1938 pre-gravel mining air photo of the site from historical photography flown for the Salt Lake Aqueduct Project (frames sla1-20 and sla1-21, original scale 1:20,000; Bowman and Beisner, 2008). The air photo center was approximately registered to the UTM NAD83 grid system by Bowman and Beisner (2008). However, we further adjusted the photo scale, rotation, and placement to correspond to range front bedrock exposures evident on the 1938 photos and 2006 U.S. Geological Survey digital orthophotography available from Utah AGRC. The 1938 photos were then enlarged and overlaid with the site boundary for stereo viewing. Several northwest-trending escarpments were observed on Figure 3A crossing the site, which correspond to locations of significant faults encountered in the trenches (discussed below and shown in red, with bar and ball on downthrown side). Except for some broad correlations, surficial faulting

evidence is obscured by gravel mining disturbance on 1977 and later air photos and a 2013 geoprocessed LIDAR image available from the Utah AGRC (Figures 3B through 3E). No evidence for other geologic hazards was observed on the air photos at the site or in the area.

4.3 Subsurface Investigation

Eight trenches were excavated and logged at the Project in 2009 and one trench was excavated and logged in 2020 to evaluate subsurface geologic conditions and assess the potential hazard from surface faulting. The 2009 investigation was conducted prior to formalization of the current Cottonwood Heights City SLEDS, based on an estimated timeline provided by Tim Thompson of GeoStrata. No work plan was prepared for the 2009 investigation, and no Project scoping or field reviews were conducted. A work plan dated March 2, 2020 was prepared for the 2020 investigation that was approved by Tim Thompson of GeoStrata on March 17, 2020. A field review for trench T-9 was conducted with Mr. Thompson on March 27, 2020.

Trench excavation and logging in 2009 was performed on weekends to facilitate backfilling and restoration and allow for unrestricted construction vehicle access prior to active operations each following Monday. Subsurface exploration was limited to accessible areas not mantled by large gravel piles, such as along roads, and further restricted by the easement for the aqueduct crossing the site. No exploration was conducted in steep areas of the eastern part of the Project (east of the steep escarpments from gravel mining) and no long continuous trench exposures were feasible. The trenches were excavated to a safe depth sufficient to expose lacustrine sediments from Lake Bonneville capable of displaying active faulting and providing good chronostratigraphic markers. Deep fill materials were encountered in places that complicated excavation and logging, such as from active and inactive utility lines, old pit excavations, backfilled settling ponds, and past grading activities. Although native sediments were exposed, excavation in some areas could not extend deep enough to expose correlative stratigraphy across exposed faults. The trenches also exposed bedded fills that appeared similar to native sediments, which we do not consider unusual given the site use as a gravel pit operation; in general, we interpreted fills where sediments contained anomalous materials or had an abnormal appearance from soil organics inclusion, conservatively erring on the side of a fill interpretation.

Figure 4 is a site plan at a scale of 1:1,200 (1 inch equals 100 feet) showing the site boundary, current development plan, locations for the trenches conducted for our study, locations of three Gordon Geotechnical borings conducted in March 2020, and exposed faults in the trenches (shown by small red lines, with bar and ball on the downthrown side). Trench locations were measured in the field using a handheld GPS and by trend and distance methods, and subsequently surveyed to provide positional accuracy. The 2009 trenches were surveyed by Benchmark Engineering and the 2020 trench (T-9) was surveyed by McNeil Engineering. Surveyed elevations for significant faults are tagged in blue on Figure 4 to show the highest point of the fault in the trench exposure. Fault elevation is shown because the site has been and will be subject to significant surface modification, which may change the fault location depending on dip direction, angle, and amount of surface material removed. The trenches generally provide good overlapping coverage given a presumed overall fault trend of about N15°W. The trenches at the Project were excavated in three general alignments: (1) a southern alignment formed by T-1, T-2, T-7, and T-8; (2) a middle alignment consisting of T-3, T-4, T-5, and T-6; and (3) a northern alignment consisting of T-9 (Figure 4). T-1 extended an overall S87°W for a total distance of 125 feet (stations -5.0 feet to 120.0 feet, east to west, Figures 4 and 5). T-2 extended an overall S64°W for a total distance of 280 feet (stations -5.0 feet to 275.0 feet, east to west, Figures 4 and 6). T-3 extended an overall S85°E for a total distance 192.5 feet (stations -1.5 feet to 191.0 feet, west to east, Figures 4 and 7). T-4 extended an overall S73°E for a total distance of 211.4 feet (stations -4.0 to 207.4 feet, west to east, Figures 4 and 8). T-5 extended sinuously an overall S82°E for a total distance of 339 feet (stations -5.0 feet to 334.0 feet, west to east, Figures 4 and 9). T-6 extended an overall S77°W for a total distance of 171 feet (stations -5.0 feet to 166.0 feet, east to west, Figures 4 and 10). T-7 extended an overall N79°E for a total distance of 146.3 feet (stations -3.4 feet to 143.0 feet, west to east, Figures 4 and 11). T-8 extended an overall S77°W for a total distance of 373.1 feet (stations -3.1 feet to 370 feet, east to west, Figures 4 and 12). T-9 extended an overall N87°W for a total distance of 218 feet (stations -5.0 feet to 218.0 feet, east to west, Figures 4 and 13).

Figures 5 through 13 are detailed logs of the trenches at a scale of 1:60 (1 inch equals 5 feet). Due to space restraints and the scale of the logs, all of the trenches cover multiple sheets. Except for some schematic clasts and within the defined log scale, the logs generally accurately depict notable bedding and texture observed in the trenches. With the exception of trench T-2, which was excavated west from the east end and then east from west end to mate up, original stations and logging direction are preserved on the logs. Trench locations are shown on Figure 4 with stations denoted on the logged wall. The trenches were digitally photographed to document the exposures at either 5- or 10-foot intervals. These photos are not provided herein, but are available on request. Trench logging generally followed methodology in McCalpin (1996), with the exception that soil horizons were not logged due to surficial disturbance.

The trenches at the site mainly exposed a well-bedded sequence of lacustrine-deltaic fine sand and silt that coarsened eastward to sandy, cobbly, and bouldery crossbedded gravels. Alluvium may have been present at the surface overlying the lacustrine-deltaic sediments, but was stripped off during early gravel pit activities and was not observed in the trenches. The depositional sequence exposed in the trenches at the site consisted of (from oldest to youngest): (1) a lower, strongly east-dipping, crossbedded sandy gravel below an intra-unit angular unconformity and an overlying west-dipping cobbly to bouldery gravel (exposed as unit 1a in T-5 and T-7, and unit 2 in T-6; Figures 9 through 11); (2) a thin unit of deformed sand to silt, likely from a low-energy landslide that occurred subaqueously in Lake Bonneville shortly after its transgression across the site (exposed as unit 1a in T-3, and 1b in T-1, T-2, T-4, and T-5; Figures 5-9); and (3) a sequence of interbedded and crossbedded sand and gravel deposits with lesser silt (exposed as unit 1c in T-1, T-5, and T-7; units 1c and 1d in T-2 and T-4; unit 1b in T-3; and unit 1g in T-8; Figures 5 through 9, 11, and 12). Interbedded and interfingering sand and gravel was exposed in trench T-9 that we infer corresponds to the latter. The sediments likely represent glacial outwash from Big Cottonwood Canyon accumulating in the delta emanating from the canyon mouth, followed by Lake Bonneville inundation and subsequent deltaic deposition in the lake. Trench T-8 also exposed lacustrine clay and gravelly clay likely deposited in a lagoon behind a longshore barrier bar (units 1e an 1f, Figure 12), and T-6 exposed a pre-Lake Bonneville or near-shore landslide deposit comprised of lean to fat blue-gray clay with mineralized wood debris and bone fragments in the footwall of fault F9 (unit 1, Figure 10).

All of the trenches at the site, except for T-5, exposed one or more faults that displace the Lake Bonneville stratigraphic sequence. No evidence for faulting was observed in T-5. Major faults showing more than 4 feet of displacement were observed in trenches T-3, T-6, T-7, and T-8, corresponding to three main, west-dipping, en-echelon traces (from west to east): (1) a trace formed by F1 and F2 on the west side of the project, which appears to converge northward; (2) fault F7 in the central part of the project; and (3) faults F8 and F9 in the eastern part of the project, which also converge northward (Figure 4). The faults correspond to visible west-facing escarpments on Figure 3A that form a series of steps from west to east across the site. Minor faults with between 0.3 and 4.0 feet of displacement were observed in T-2, T-4, and T-7, corresponding to faults F2 through F6. These faults converge northward with F1 and F7 (Figure 3A). Two antithetic faults were also exposed in the trenches: (1) AF1 on the west side of the project in the westernmost escarpment on Figure 4, and (2) AF2 on the east side, which forms a graben bounded by a fourth major west-dipping fault to the east on Figure 3A. Small displacement faults with less than 0.3 feet of displacement were observed in T-1, T-2, and T-4. The small displacement faults in T-2 and T-4 are in the F3/F4 zone, whereas the faults in T-1 appear to be unrelated and do not correspond to any surficial features on Figure 3A. Trench T-9 exposed a fault with 0.5 feet of down-to-the-west offset that displaces and is overlain by lacustrine sand and gravel (which is suggestive an intra-lacustrine event), a younger fault with 0.7 feet of down-to-the-west offset that displaces the lacustrine sequence to the fill base, and a narrow zone of crack fill in the lacustrine sequence that displayed no net displacement. A lineament is on the 1938 air photo that suggests this fault (F10, Figure 4) trends to the southeast and then bends eastward to converge with F9. No trenching could be conducted to confirm the fault location southeast of trench T-9 due to the aqueduct easement.

4.4 Cross Sections

Figures 14 through 16 shows three cross sections (A-A', B-B', and C-C') across the site as located on Figure 4. Figure 14 is at a scale of 1 inch equals 25 feet, Figure 15 is at a scale of 1 inch equals 50 feet, and Figure 16 is at a scale of 1 inch equals 40 feet with no vertical exaggeration. The topographic profiles are based on geoprocessed 2013 LIDAR data. The LIDAR data provides a snapshot of topographic conditions at the time it was acquired; past, present and future topographic conditions may vary. Cross Section A-A' is based on the stratigraphic sequence in trenches T-5, T-6, and T-9. Cross Section B-B' is based on Geotechnical boring B-3. Cross section C-C' is based on the stratigraphic sequence in trenches T-6, T-7, and T-8, as well as subsurface data from Gordon Geotechnical boring B-2. Units and contacts should be considered approximate and inferred, and variations should be expected at depth and laterally. We caution that some portions of the cross sections have limited or no subsurface data.

No groundwater was encountered in Gordon Geotechnical boring B-3 or any of the trenches at the site, except for in the base of the old tank excavation in trench T-2 (Figure 6C, stations 155 feet to about 190 feet). Groundwater in trench T-2 was at a depth of about 13 feet below the ground surface (bgs), and was encountered at a depth of 22.5 feet bgs in boring B-1 and at a depth of 29 feet bgs in boring B-2 (Figure 4). Based on this, groundwater deepens between trench T-2 and boring B-2 from 13 to 29 feet deep, and

deepens to more than 100 feet between borings B-2 and B-3. These data suggest a southwestward flow direction. Inferred groundwater levels are shown on the cross sections.

5.0 GEOLOGIC HAZARDS

Assessment of potential geologic hazards and the resulting risks imposed is critical in determining the suitability of the site for development. Table 1 below shows a summary of the geologic hazards reviewed at the site, as well as a relative (qualitative) assessment of risk to the Project for each hazard. A "high" hazard rating (H) indicates a hazard is present at the site (whether currently or in the geologic past) that is likely to pose significant risk and/or may require further study or mitigation techniques. A "moderate" hazard rating (M) indicates a hazard that poses an equivocal risk. Moderate-risk hazards may also require further studies or mitigation. A "low" hazard rating (L) indicates the hazard is not present, poses little or no risk, and/or is not likely to significantly impact the Project. Low-risk hazards typically require no additional studies or mitigation. We note that these hazard ratings represent a conservative assessment for the entire site and risk may vary in some areas. Careful selection of development areas can minimize risk by avoiding known hazard areas.

Hazard	н	Μ	L
Earthquake Ground Shaking	X		
Surface Fault Rupture	Х		
Liquefaction and Lateral-spread Ground Failure		Х	
Tectonic Deformation	Х		
Seismic Seiche and Storm Surge			Χ
Stream Flooding			Х
Shallow Groundwater		Х	
Landslides and Slope Failures		Χ	
Debris Flows and Floods			Χ
Rock Fall			Х
Problem Soil and Rock			Χ

Table 1. Geologic haz	ards summary.
-----------------------	---------------

5.1 Earthquake Ground Shaking

Ground shaking refers to the ground surface acceleration caused by seismic waves generated during an earthquake. Strong ground motion is likely to present a significant risk during moderate to large earthquakes located within a 60 mile radius of the Project area (Boore and others, 1993). Seismic sources include mapped active faults, as well as a random or "floating" earthquake source on faults not evident at the surface. The Utah Geological Survey Quaternary Fault Database (Black and others, 2003; January 2017 update) shows numerous class A faults within 60 miles of the Project that may pose potential seismic sources.

The extent of property damage and loss of life due to ground shaking depends on factors such as: (1) proximity of the earthquake and strength of seismic waves at the surface (horizontal motions are the most damaging); (2) amplitude, duration, and frequency of ground motions; (3) nature of foundation materials; and (4) building design. Based on 2018 IBC provisions, a site class of D (stiff soil), and a risk category of II, calculated seismic values for the site (centered on 40.6300° N, -111. 7979° W) are summarized below:

Table 2. Seismic nd	izurus summury.
Туре	Value
Ss	1.341 g
S ₁	0.498 g
S _{MS} (F _a x S _S)	1.341 g
S _{M1} (F _v x S ₁)	See ASCE 7-16 Section 11.4.8
S _{DS} (2/3 x S _{MS})	0.894 g
S _{D1} (2/3 x S _{M1})	See ASCE 7-16 Section 11.4.8
Site Coefficient, F _a	= 1.000
Site Coefficient, F _v	See ASCE 7-16 Section 11.4.8
Peak Ground Acceleration, PGA	= 0.609 g

 Table 2. Seismic hazards summary.

Given the above information, earthquake ground shaking poses a high risk to the site. Earthquake ground shaking is a regional hazard common to all Wasatch Front areas. The hazard is mitigated by design and construction in accordance with the current adopted building code. We note that IBC 2018 provisions require calculation of the spectral acceleration value (S_{M1}), seismic design value (S_{D1}), and site coefficient (F_v) differently from IBC 2015. In municipalities where IBC 2018 has been adopted, the Project engineer or architect should determine these seismic values in accordance with ASCE 7-16 Section 11.4.8 guidelines.

5.2 Surface Fault Rupture

Movement along faults at depth generates earthquakes. During earthquakes larger than Richter magnitude 6.5, ruptures along normal faults in the intermountain region generally propagate to the surface (Smith and Arabasz, 1991) as one side of the fault is uplifted and the other side down dropped. The resulting fault scarp has a near-vertical slope. The surface rupture may be expressed as a large singular rupture or several smaller ruptures in a broad zone. Ground displacement from surface fault rupture can cause significant damage or even collapse to structures located on an active fault.

All of the trenches at the site, except for T-5, exposed one or more faults that displace the Lake Bonneville stratigraphic sequence. No evidence for faulting was observed in T-5. Faults displaying 0.3 feet or more of displacement in the trench exposures are correlated across the site on Figure 4 (bold red dashed lines) based on trend, displacement sense and air photo evidence (Section 4.2). The faults are labeled for reference purposes with "F" where west dipping and "AF" where east dipping, and appended with a number (1 through

10 for west-dipping faults, and 1 or 2 for east-dipping faults) to denote specific traces (Figure 4). Small displacement faults (less than 0.3 feet) are noted where they were encountered in a trench, but are not correlated. With the exception of trench T-1, all of the small displacement faults were observed in existing fault zones with larger displacements. Table 3A is a compilation of fault data from the trenches at the site, and shows the log station of each trenched fault, fault trends, and dip angles.

Given the above, the risk from surface faulting is high at the site. Based on our current understanding that surface fault rupture and deformation tend to follow past patterns, we recommend a non-buildable (setback) zone around the projected traces of the fault crossing the site as shown on Figure 4. Calculated setback distances based on the fault parameters and guidelines in Lund and others (2016) are also indicated on Table 3A. Recommended setback distances are shown on Table 3B. The fault setback for the downthrown side of active faults at the Project was calculated using:

 $S = U (2D + F/tan\theta)$

where:

S = *Setback distance from active faults;*

U = Criticality factor (2.0 for IBC class IIb structures);

D = Expected maximum fault displacement per event (assumed to be the measured vertical displacement or, if not measured or confidently determined, a maximum displacement of 8.5 feet is used; all displacements are conservatively assumed to be from a single event unless there is evidence otherwise);

F = Maximum depth of footing or subgrade portion of the building (assumed to be 8 feet); and

 $\theta = Dip of the fault.$

The fault setback for the upthrown side of the faults was calculated using the same parameters and:

S = U(2D)

Small displacement faults (< 0.3 feet of offset) are not listed on Table 3A, but two such faults were observed in trench T-1 underlying Pad E (Figures 4 and 5A). These faults show no evidence for Holocene reactivation that would suggest a future larger displacement is likely. We believe the faults pose a low life-safety risk, but recommend the structure be designed to withstand up to 0.3 feet of vertical offset to reduce the risk of costly repairs. Utility lines that cross faults should also be engineered to withstand expected displacements and/or have design features to ensure life safety.
	Table 3A. Fault parameters and calculated setbacks; fault numbers correspond to Figure 4.												
TRENCH 2, east to west.													
			Setback Dist	ance (S), F=8	Safety								
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ө)	D (ft)	Tan⊖	UFS	DFS	Factor ⁴			
F4	4813.08	10.9	0	N9°W	65	1.0	2.1	4.0	11.5	0.9			
F3	4813.57	35.7	0.6	N15°W	68	2.3	2.5	9.2	16.3	0.8			
F2	4821.44	219.5-226.1	6.3	N10°W - N15°W	69	2.3	2.6	9.2	21.6	0.8			
AF1	4819.36	271.7	0	N10°W	78	1.2	4.7	4.8	8.2	0.4			

	TRENCH 3, west to east.											
									Setback Distance (S), F=8			
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ө)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴		
F1	4810.43	14.9	0	N15°W	59	8.5	1.7	34.0	43.6	1.2		
AF1	4810.49	20.2	0	N12°W	47	4.8	1.1	19.2	34.1	1.9		
F2	4818.12	48.8	0	N16°W	53	8.5	1.3	34.0	46.1	1.5		

	TRENCH 4, west to east.											
									Setback Distance (S), F=8			
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ə)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴		
F3	4821.24	23	0	N15°W	51	3.9	1.2	15.6	28.6	1.6		
F4	4820.32	92.5	0	N13°W	57	0.8	1.5	3.2	13.6	1.3		

	TRENCH 6, east to west.										
									Setback Distance (S), F=8		
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ө)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴	
F9	4837.15	81.6	0	N33°W	75	8.5	3.7	34.0	38.3	0.5	

	TRENCH 7, west to east.											
			Setback Distance (S), F=8		Safety							
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ө)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴		
F5	4816.65	30.8-32.0	0.5	N18°E - N27°E	77	1.2	4.3	4.8	9.0	0.5		
F6	4816.47	37.6-39.1	1.2	N18°W - N10°W	66	0.6	2.2	2.4	10.7	0.9		
F7	4814.01	56.6-62.3	4.6	N18°W	71	5.2	2.9	20.8	30.9	0.7		

TRENCH 8, east to west.											
			Setback Distance (S), F=8		Safety						
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ə)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴	
AF2	4835.04	11.4	0	N10°E	78	1.3	4.7	5.2	8.6	0.4	
F9	4833.72	24.6-26.3	1.7	N48°W	57	8.5	1.5	34.0	46.1	1.3	
F8	4838.44	139.3	0	N18°W	89	8.0	57.3	32.0	32.3	0.0	

	TRENCH 9, east to west.										
									Setback Distance (S), F=8		
Fault	Elevation ¹	Station ²	Width (ft) ³	Trend	Dip (°Ө)	D (ft.)	Tan⊖	UFS	DFS	Factor ⁴	
F10	4887.04	6.6	0	N35°W	75	0.7	3.7	2.8	7.1	0.5	

¹ Surveyed elevation (in 2009 for trenches 1 through 8, in 2020 for trench 9) minus the distance from the ground surface to the highest fault point on the log.

- ² Distance in feet from 0 horizontal.
- ³ Width of fault zone between correlative units, or highest fault points if no stratigraphic correlation.
- ⁴ Setback adder per foot where footings are at depths exceeding 8 feet (see below).

		Table 3B. Recomment	ded se	tbacks.	
		Setback distance in feet (F=8)		Safety	
Fault	Dip	West	East	Factor ⁴	Notes
F1	SW	43.6	34.0	1.2	Based on T-3 above.
F2	SW	46.1	34.0	1.5	Based on T-3 above.
F3	SW	28.6	20.0	1.6	Based on T-4 above.
F4	SW	20.0	20.0	1.3	Based on T-4 above.
F5	NW	20.0	20.0	0.5	Based on T-7 above.
F6	SW	20.0	20.0	0.9	Based on T-7 above.
F7	SW	30.9	20.8	0.7	Based on T-7 above.
F8	SW-NW	32.3	32.0	0.0	Based on T-8 above.
F9	SW	46.1	34.0	1.3	Based on T-8 above.
F10	SW	20.0	20.0	0.5	Based on T-9 above.
AF1	NE	20.0	20.0	1.9	Based on T-3 above.

The setback distances on Tables 3A-B and Figure 4 are calculated assuming an 8-foot footing depth from existing grade. However, the Project may require cuts to create level building pads that would have deeper footing depths than we assume. We therefore show a safety factor on Tables 3A and 3B that should be added to the calculated setback distance (S, Table 3A) per 1-foot difference between the surveyed fault elevation (or existing grade) and proposed grade elevation where the difference exceeds 6 feet (assuming footings are 2 feet below grade, for a total depth of 8 feet). The distance between the fault and nearest portion of the structure should be more than the sum. The minimum setback is 20 feet. This safety factor only applies to the downthrown fault sides. For upthrown fault sides, cuts would shift a fault and the corresponding UFS setback horizontally in the direction of dip, i.e. westward for west-dipping faults and eastward for east-dipping faults. The distance may be calculated as follows:

$\Delta \mathbf{S} = \mathbf{H}/tan\mathbf{\Theta}$

where:

 ΔS = horizontal distance (shift in feet);

H = cut height (difference in feet between existing and proposed grade elevations); and

 θ = Dip of the fault.

We recommend not modifying the defined setback areas on Figure 4 to avoid complexity and because development plans may change. Instead, the Project civil engineer should review the above on a case-by-case basis to ensure that structures are at a safe distance in areas where significant cuts are planned. This may be shown as a table on the grading plan. It is our understanding that minor adjustments will be made with regard to the condominium and Pad E structures on Figure 4. The most-recent grading plan should be submitted at the time our report and the geotechnical engineering report are submitted to Cottonwood Heights City. Though plans may change (and may differ from the base provided on Figure 4), CAD fault and setback delineations on Figure 4 have been confirmed to accurately coincide with those of the Project civil engineer.

5.3 Liquefaction and Lateral-Spread Ground Failure

Liquefaction occurs when saturated, loose, cohesionless, soils lose their support capabilities during a seismic event because of the development of excessive pore pressure. Earthquake-induced liquefaction can present a significant risk to structures from bearing-capacity failures to structural footings and foundations, and can damage structures and roadway embankments by triggering lateral spread landslides. Earthquakes of Richter magnitude 5 are generally regarded as the lower threshold for liquefaction. Liquefaction potential at the site is a combination of expected seismic accelerations (earthquake ground shaking), groundwater conditions, and presence of susceptible soils.

Given subsurface soil conditions observed in the trenches and Gordon Geotechnical borings, sandy soils possibly susceptible to liquefaction are present underlying the site. The site is also in an area subject to strong ground shaking, and areas west of boring B-2 have groundwater at a depth less than 30 feet. McCalpin (2002) notes that an event between 17,000 to 20,000 years ago on the Salt Lake City section of the WFZ (which he terms event S?) may have been responsible for a landslide into the lake, and most of the trenches at the site conducted for our investigation exposed evidence for a similar subaqueous failure that occurred during the Bonneville transgression. This landslide may be related to liquefaction lateral spreading, although this is unconfirmed.

Based on the above, we rate the existing risk from liquefaction as moderate. We conservatively recommend that the hazard from liquefaction be considered and discussed in the Project geotechnical engineering evaluation. Future liquefaction from a large-magnitude earthquake on the Salt Lake City section of the WFZ, if it occurs, could similarly manifest as lateral spreading given the site slopes.

5.4 Tectonic Deformation

Tectonic deformation refers to subsidence from warping, lowering, and tilting of a valley floor that accompanies surface-faulting earthquakes on normal faults. Large-scale tectonic subsidence may accompany earthquakes along large normal faults (Lund, 1990). Tectonic subsidence is believed to mainly impact those areas immediately adjacent to the downthrown side of active normal faults. The Project straddles a broad zone of faulting with multiple west-dipping main traces and at least two east-dipping antithetic traces. Backtilting was also observed in several of the trenches conducted for our investigation and is inferred on the cross sections shown on Figures 14 through 16.

Given the above, the Project is in an area at a high risk from tectonic deformation. Tectonic deformation is not typically a life-safety issue but can tilt building pads and alter sewer and water flow gradients, which may require expensive subsequent repairs. The owner and all future owners should understand and be willing to accept the risk. We recommend that the hazard from tectonic deformation be disclosed in all future real estate transactions.

5.5 Seismic Seiche and Storm Surge

Earthquake-induced seiche presents a risk to structures within the wave-oscillation zone along the edges of large bodies of water, such as the Great Salt Lake. Given the elevation of the subject property and distance from large bodies of water, we rate the risk from seismic seiches as low.

5.6 Stream Flooding

Stream flooding may be caused by direct precipitation, melting snow, or a combination of both. In much of Utah, floods are most common in April through June during spring snowmelt. High flows may be sustained from a few days to several weeks, and the potential for flooding depends on a variety of factors such as surface hydrology, site grading and drainage, and runoff. No active drainages were observed crossing the Project and Federal Emergency Management Agency flood insurance rate mapping (Map Number 49035C0318G, effective 09/25/2009) classifies the Project in "Zone X - Area of Minimal Flood Hazard". Given the above, we rate the risk from stream flooding as low. Care should be taken that proper surface drainage is maintained.

5.7 Shallow Groundwater

As discussed Section 4.4 above, groundwater deepens between trench T-2 and Gordon Geotechnical boring B-2 from 13 to 29 feet deep (Figure 4), and deepens to more than 100 feet between borings B-2 and B-3. Given this, the western half of the site has a moderate risk from shallow groundwater. Foundation and site subsurface drainage concerns should be considered and discussed in the Project geotechnical engineering evaluation. Care should be taken that proper subsurface drainage is maintained.

5.8 Landslides and Slope Failures

Slope stability hazards such as landslides, slumps, and other mass movements can develop along moderate to steep slopes where a slope has been disturbed, the head of a slope loaded, or where increased groundwater pore pressures result in driving forces within the slope exceeding restraining forces. Slopes exhibiting prior failures, and also deposits from large landslides, are particularly vulnerable to instability and reactivation.

No landslides are mapped or evident at the Project on Figure 2, but trench T-6 exposed evidence for a relict landslide that incorporated surficial debris and likely occurred prior to or contemporaneous with the Bonneville transgression. James Kirkland of the Utah

Geological Survey believed the bone fragments incorporated in the landslide (Figure 10A, stations 11-12 feet) belonged to a Pleistocene ungulate based on a brief, informal, visual examination in May 2009. This presumed age would match the stratigraphic provenance.

Given the above and the steep slopes at the site associated with prior gravel mining operations, as profiled on Figures 14 through 16, we rate the risk from landslides and slope instability as moderate. We conservatively recommend that slope stability be evaluated by the Project geotechnical engineer based on site-specific soil conditions and the data provided in this report. Recommendations should be provided to reduce the landslide hazard risk if factors of safety are determined to be unsuitable. Water, steep man-made cuts, and non-engineered fill materials are often major contributors to slope instability. Care should therefore also be taken to maintain proper site drainage, that site grading does not destabilize slopes at the site without prior geotechnical analysis and grading plans, and that water from man-made sources is minimized in potentially unstable slope areas.

5.9 Debris Flows

Debris flow hazards are typically associated with unconsolidated alluvial fan deposits at the mouths of large range-front drainages, such as those along the Wasatch Front. Debris flows have historically significant damage in the Wasatch Front area. The site is not in a mapped active alluvial fan, and no evidence for debris-flow channels, levees, or other debris-flow features was observed at the site on air photos or during our reconnaissance. Given the above, we rate the risk as low.

5.10 Rock Fall

No significant bedrock outcrops are at the site or in adjacent higher slopes that could present a source area for rock fall clasts, and no boulders likely from rock falls were observed at the site. Based on the above, we rate the hazard from rock falls as low.

5.11 Problem Soil and Rock

Surficial soils that contain certain clays can swell or collapse when wet. Soil conditions and specific recommendations for site grading, subgrade preparation, and footing and foundation design should be provided in the Project geotechnical engineering evaluation.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Earthquake ground shaking, surface fault rupture, and tectonic deformation are identified as posing a high relative risk to the proposed development. Liquefaction and lateral-spread ground failure, shallow groundwater, and landslides and slope failures are identified as posing a moderate risk. The following recommendations are provided with regard to the geologic characterizations in this report:

- Seismic Design All habitable structures developed at the property should be constructed to current adopted seismic building codes to reduce the risk of damage, injury, or loss of life from earthquake ground shaking. The Project geotechnical engineer should confirm the ground-shaking hazard and provide appropriate seismic design parameters as needed. We note that earthquake ground shaking is a common hazard for all Wasatch Front areas and, although ground shaking and surface faulting are related earthquake hazards, they pose distinctly different risks.
- *Geotechnical Evaluation* A design-level geotechnical engineering study should be conducted prior to construction to assess soil foundation conditions, assess the risk from shallow groundwater and liquefaction (and provide recommendations as needed), and evaluate slope stability. The stability evaluation should be based on geologic characterizations in this report and site-specific geotechnical data, and provide recommendations for reducing the risk of landsliding if the factors of safety are deemed unsuitable.
- *Site Modifications and Drainage* No unplanned cuts should be made in the slopes at the site without prior geotechnical analyses, and proper surface and subsurface drainage should be maintained.
- Surface Fault Rupture Hazards No structures intended for human occupancy should be located in the setback zones shaded in light red on Figure 4. It is generally accepted practice to allow streets, driveways, yards, and other non-occupied, non-attached structures to be constructed within these areas. No habitable structures should also be located in the unexplored area shaded in light green on Figure 4 without additional subsurface exploration to evaluate if active faults are present. The structure on Pad E, which overlies two small displacement faults observed in trench T-1 (Figures 4 and 5A), should be designed to withstand up to 0.3 feet of vertical offset. Utility lines that cross faults should also be engineered to withstand expected displacements and/or have design features to ensure life safety.
- *Grading and Development Plan Review* Significant cuts could change fault locations and setback zone calculations. A safety factor and an upthrown fault side modifier are therefore provided in Section 5.2 to assist review of the grading and development plan by the Project civil engineer in areas where there such cuts may be planned. Care should be taken in these areas to ensure that proposed structures remain at a safe distance. Results of this review may be shown as a table on the grading plan. The most-recent grading

plan should be included with our report and the geotechnical engineering report when the reports are submitted to Cottonwood Heights City. We have confirmed our fault and setback delineations on Figure 4 accurately coincide with CAD data of the Project civil engineer.

- *Excavation Backfill Considerations* The trenches may be in areas where a structure could subsequently be placed. However, backfill may not have been replaced in the excavations in compacted layers. The fill could settle with time and upon saturation. Should structures be located in an excavated area, no footings or structure should be founded over the excavation unless the backfill has been removed and replaced with structural fill.
- *Excavation Inspection* This report does not reflect subsurface variations that may occur laterally away from an exploration trench. Such variations may occur that could become evident during construction. Thus, it is important that we observe subsurface materials exposed in future excavations to take advantage of opportunities to recognize differing conditions that could affect the performance of a planned structure.
- Hazard Disclosures and Report Availability All hazards identified as posing a high risk at the site should be disclosed to future buyers so that they may understand and be willing to accept any potential developmental challenges and/or risks posed by these hazards. This report should be made available to architects, building contractors, and in the event of a future property sale, real estate agents and potential buyers. The report should be referenced for information on technical data only as interpreted from observations and not as a warranty of conditions throughout the site. The report should be submitted in its entirety, or referenced appropriately, as part of any document submittal to a government agency responsible for planning decisions or geologic review. Incomplete submittals void the professional seals and signatures we provide herein. Although this report and the data herein are the property of the client, the report format is the intellectual property of Western Geologic and should not be copied, used, or modified without express permission of the authors.

7.0 REFERENCES

- Anderson, R.E., 1989, Tectonic evolution of the intermontane system--Basin and Range, Colorado Plateau, and High Lava Plains, *in* Pakiser, L.C., and Mooney, W.D., editors, Geophysical framework of the continental United States: Geological Society of America Memoir 172, p. 163-176.
- Arabasz, W.J., Pechmann, J.C., and Brown, E.D., 1992, Observational seismology and evaluation of earthquake hazards and risk in the Wasatch Front area, Utah, *in* Gori, P.L. and Hays, W.W., editors, <u>Assessment of</u> <u>Regional Earthquake Hazards and Risk along the Wasatch Front, Utah:</u> Washington, D.C, U.S. Geological Survey Professional Paper 1500-D, Government Printing Office, p. D1-D36.
- Black, B.D., Hecker, Suzanne, Hylland, M.D., Christenson, G.E., and McDonald, G.N., 2003, Quaternary fault and fold database and map of Utah: Utah Geological Survey Map 193DM, CD-ROM.
- Bowman, S.D., and Beisner, Keith, 2008, Historical aerial photography, 1938 Salt Lake Aqueduct Project, Salt Lake, Utah, and Wasatch Counties, Utah: Utah Geological Survey Open-File Report 537, CD-ROM, with GIS files.
- Bowman, S.D., and Lund, W.R., 2016, Guidelines for conducting engineering-geology investigations and preparing engineering-geology reports in Utah, *in* Bowman, S.D., and Lund, W.R., editors, Guidelines for investigating geologic hazards and preparing engineering-geology reports, with a suggested approach to geologic-hazard ordinances in Utah: Utah Geological Survey Circular 122, p. 15–30.
- Gwynn, J.W. (Editor), 1980, Great Salt Lake--A scientific, historical, and economic overview: Utah Geological Survey Bulletin 166, 400 p.
- Jarrett, R.D., and Malde, H.E., 1987, Paleodischarge of the late Pleistocene Bonneville flood, Snake River, Idaho, computed from new evidence: Geological Society of America Bulletin, v. 99, p. 127-134.
- Lund, W.R. (Editor), 1990. Engineering geology of the Salt Lake City metropolitan area, Utah: Utah Geological and Mineral Survey Bulletin 126, 66 p.
- Lund, W.R., Christenson, G.E., Batatian, L.D., and Nelson, C.V., 2016, Guidelines for evaluating surface-faultrupture hazards in Utah, in Bowman, S.D., and Lund, W.R., editors, Guidelines for investigating geologic hazards and preparing engineering-geology reports, with a suggested approach to geologic-hazard ordinances in Utah: Utah Geological Survey Circular 122, p. 31–58.
- Machette, M.N., Personius, S.F., and Nelson, A.R., 1992, Paleoseismology of the Wasatch fault zone—A summary of recent investigations, interpretations, and conclusions, *in* Gori, P.L., and Hays, W.W., editors, Assessment of regional earthquake hazards and risk along the Wasatch Front, Utah: U.S. Geological Survey Professional Paper 1500, p. A1-A71.
- McCalpin, J.P., 1996, Paleoseismology: San Diego, California, Academic Press Inc., Volume 62 of the International Geophysical Series, 588 p.
- _____, 2002, Post-Bonneville paleoearthquake chronology of the Salt Lake City segment, Wasatch fault zone, from the 1999 "Megatrench" site: Utah Geological Survey Miscellaneous Publication 02-7, 34 p. with appendices.
- McKean, A.P., 2018, Interim geologic map of the Sugar House Quadrangle, Salt Lake County, Utah: Utah Geological Survey Open-File Report 687DM, scale 1:24,000, 28 p. pamphlet.
- McKean, A.P., and Solomon, B.J., 2018, Interim geologic map of the Draper Quadrangle, Salt Lake and Utah Counties, Utah: Utah Geological Survey Open-File Report 683DM, scale 1:24,000, 33 p. pamphlet.
- Miller, D.M., 1990, Mesozoic and Cenozoic tectonic evolution of the northeastern Great Basin, *in* Shaddrick, D.R., Kizis, J.R., and Hunsaker, E.L. III, editors, Geology and Ore Deposits of the Northeastern Great Basin: Geological Society of Nevada Field Trip No. 5, p. 43-73.

- O'Connor, J.E., 1993, Hydrology, hydraulics, and geomorphology of the Bonneville flood: Geological Society of America Special Paper 274, 83 p.
- Oviatt, C.G., 2015, Chronology of Lake Bonneville, 30,000 to 10,000 yr B.P.: Quaternary Science Reviews, Issue 110, p. 166-171.
- Oviatt, C.G., Currey, D.R., and Sack, Dorothy, 1992, Radiocarbon chronology of Lake Bonneville, Eastern Great Basin, USA: Paleogeography, Paleoclimatology, Paleoceology, v. 99, p. 225-241.
- Personius, S.F., and Scott, W.E., 1992, Surficial geologic map of the Salt Lake City segment and parts of adjacent segments of the Wasatch fault zone, Davis, Salt Lake, and Utah Counties, Utah: U.S. Geological Survey Miscellaneous Investigations Series, Map I-2106, scale 1:50,000.
- _____, 2009, Surficial geologic map of the Salt Lake City segment and parts of adjacent segments of the Wasatch fault zone, Davis, Salt Lake, and Utah Counties, Utah, digitized from U.S. Geological Survey Miscellaneous Investigations Series Map I-2106 (1992): Utah Geological Survey Map 243DM, 2 plates, scale 1:50,000.
- Sbar, M.L., Barazangi, M., Dorman, J., Scholz, C.H., and Smith, R.B., 1972, Tectonics of the Intermountain Seismic Belt, western United States--Microearthquake seismicity and composite fault plane solutions: Geological Society of America Bulletin, v. 83, p. 13-28.
- Scott, W.E., and Shroba, R.R., 1985, Surficial geologic map of an area along the Wasatch fault zone in Salt Lake Valley, Utah: U.S. Geological Survey Open-File Report 85-448, 18 p., scale 1:24,000.
- Smith, R.B., and Arabasz, W.J., 1991, Seismicity of the Intermountain Seismic Belt, *in* Slemmons, D.B., Engdahl, E.R., Zoback, M.D., and Blackwell, D.D., editors, Neotectonics of North America: Geological Society of America, Decade of North American Geology Map v. 1, p. 185-228.
- Smith, R.B. and Sbar, M.L., 1974, Contemporary tectonics and seismicity of the western United States with emphasis on the Intermountain Seismic Belt: Geological Society of America Bulletin, v. 85, p. 1205-1218.
- Stewart, J.H., 1978, Basin-range structure in western North America, a review, *in* Smith, R.B., and Eaton, G.P., editors, Cenozoic tectonics and regional geophysics of the western Cordillera: Geological Society of America Memoir 152, p. 341-367.
- , 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4.
- Stokes, W.L., 1977, Physiographic subdivisions of Utah: Utah Geological and Mineral Survey Map 43, scale 1:2,400,000.
- _____, 1986, Geology of Utah: Salt Lake City, University of Utah Museum of Natural History and Utah Geological and Mineral Survey, 280 p.
- Working Group on Utah Earthquake Probabilities, 2016, Earthquake Probabilities for the Wasatch Front Region in Utah, Idaho, and Wyoming: Utah Geological Survey Miscellaneous Publication 16-3, 164 p., with figures and appendices.
- Zoback, M.L., 1989. State of stress and modern deformation of the northern Basin and Range province: Journal of Geophysical Research, v. 94, p. 7105-7128.
- Zoback, M.L. and Zoback, M.D., 1989. Tectonic stress field of the conterminous United States: Boulder, Colorado, Geological Society of America Memoir, v. 172, p. 523-539.

FIGURES

Air Photo Source: 1938 U.S. Bureau of Reclamation Salt Lake Aqueduct historical photography, reproduced and georeferenced in Bowman and Beisner (2008), frame sla1-20, approximate original scale 1:20,000.

1938 AIR PHOTO

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 3A

Air Photo Source: Utah AGRC, 1977 Digital Orthophoto Quadrangle, frame q1320-1977, 1 meter resolution.

1977 AIR PHOTO

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 3B

Air Photo Source: Utah AGRC, 1990s Digital Orthophoto Quadrangle, frame q1320-83, 1 meter resolution.

1993 AIR PHOTO

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 3C

Air Photo Source: Utah AGRC, 2012 High Resolution Orthophoto, frames 12TVK320960 and 12TVK320980, 12.5 centimeter resolution.

2012 AIR PHOTO

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 3D

Air Photo Source: Utah AGRC, 2013 LIDAR Bare Earth DEM, frames BH12TVK3200096000 and BH12TVK3200098000, 50 centimeter resolution.

2013 LIDAR IMAGE

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 3E

EXPLANATION

Faults based on trenching and air photo evidence; bar and ball on downthrown side.

Trench for this study, stations denote distance in feet on logged wall; blue tags denote elevation of highest fault point in trench at time of surveying.

● B-2 Setback zones (see text for explanation).

Unexplored area, no structures intended for human occupation should be placed in this area without additional exploration.

Cross section location (Figures 14 to 16)

Gordon Geotechnical boring

Base Map: McNeil Engineering concept grading plan SK-02 dated April 24, 2020.

SITE PLAN

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 4

SCALE: 1 inch = 5 feet (no vertical exaggeration) South Trench Wall Logged

Trench logged by Bill Black, P.G. on April 25-26 and May 9, 2009

		1	1		1				
transgressiv loose to m esser silt an	edium-de		cene						
bale-brown to brown fine sand with /SM); beds deformed by a low- a liquefaction lateral spread. I (SM) in basal part grading upward and gravel. olive-brown silt and discontinuous, irse sand, and gravel lenses.									
		- - - - - - - - - - - - - - - - - - -							
280	28	1 35	290	29	95				
TRENCH 2 LOG, SHEET 4									
GEOLOGIC HAZARDS EVALUATION AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah									
				FIGUR	E 6D				

Log reviewed by Craig V Nelson, P.G., R.G., C.E.G

SCALE: 1 inch = 5 feet (no vertical exaggeration) South Trench Wall Logged

Trench logged by Bill Black, P.G. on May 23, 2009

TRENCH 6 LOG, SHEET 3

GEOLOGIC HAZARDS EVALUATION

AJ Rock LLC Property 6695 South Wasatch Boulevard Cottonwood Heights, Utah

FIGURE 10C

5	N>			\$78°₩ ──	→						
								FII			
		• • • •			Leve	I Line					
		1	e		_						
					A ¹ A ¹				1d.		
								····			0,
				, , ,	, , , , , , , , , , , , , , , , , , , ,		1	; ; ;			
	and beh a	crossbedded, ind longshore k . Interbedded,	sand, gravel, oarriers. pale-brownisl	ated to the transo , lean clay, and le h-gray, sand and h-brown, sandy gr	esser silt wi gravel.	h cobbles ar	nd boulders; u				
	and beh a b c d	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddisk with strong sto	sand, gravel, parriers. pale-brownish I, pale-grayish n, poorly bed h-brown, olive age II carbond	, lean clay, and le	esser silt wi gravel. avel with c ith trace g vish-brown ed in zones	th cobbles ar open-work gro ravel; also rej gravelly sanc s.	nd boulders; u ivel lenses. presented in k to sandy gra	nits c, e and back wall of g vel with round	f may represe pravel pit. d to subround	ent a sequenc	ce of gra
	and beh a b c d e f.	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddish with strong sto . Reddish-brow Brown to redd	sand, gravel, pale-brownish l, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poo lish brown, po	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der	esser silt wi gravel. avel with c ith trace g /ish-brown ed in zones ey silt to silt nse, grave	ih cobbles ar open-work gro ravel; also re gravelly sanc s, y clay with he ly clayey sanc	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla	nits c, e and back wall of g vel with round soil developr ay with round	f may represe pravel pit. d to subround ment. to subround o	ent a sequence cobbles and cobbles and E	ce of grat boulders 3-horizon
	and beh a b c d e f.	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddish with strong sto . Reddish-brow Brown to redd	sand, gravel, pale-brownish l, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poo lish brown, po	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye	esser silt wi gravel. avel with c ith trace g /ish-brown ed in zones ey silt to silt nse, grave	ih cobbles ar open-work gro ravel; also re gravelly sanc s, y clay with he ly clayey sanc	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla	nits c, e and back wall of g vel with round soil developr ay with round	f may represe pravel pit. d to subround ment. to subround o	ent a sequence cobbles and cobbles and E	ce of grat boulders 3-horizon
	and beh a b c d e f.	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddish with strong sto . Reddish-brow Brown to redd	sand, gravel, pale-brownish l, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poo lish brown, po	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der	esser silt wi gravel. avel with c ith trace g /ish-brown ed in zones ey silt to silt nse, grave	ih cobbles ar open-work gro ravel; also re gravelly sanc s, y clay with he ly clayey sanc	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla	nits c, e and back wall of g vel with round soil developr ay with round	f may represe pravel pit. d to subround ment. to subround o	ent a sequence cobbles and cobbles and E	ce of grat boulders 3-horizon
	and beh a b c d e f.	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddish with strong sto . Reddish-brow Brown to redd	sand, gravel, pale-brownish l, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poo lish brown, po	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der	esser silt wi gravel. avel with c ith trace g /ish-brown ed in zones ey silt to silt nse, grave	ih cobbles ar open-work gro ravel; also re gravelly sanc s, y clay with he ly clayey sanc	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla	nits c, e and back wall of g vel with round soil developr ay with round	f may represe pravel pit. d to subround ment. to subround o	ent a sequence cobbles and cobbles and E	boulders -horizon
70	and beh a b c d f. g	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddisk with strong sto . Reddish-brow Brown to redd . Grayish-browr	sand, gravel, parriers. pale-brownish I, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poor h sandy grave	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der el to gravelly sand	esser silt wi gravel. avel with c ith trace g vish-brown ed in zones ey silt to silt nse, grave with round	ih cobbles ar open-work gro ravel; also rej gravelly sand s. y clay with he ly clayey sand d to subround	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla cobbles and 105	nits c, e and back wall of g vel with round soil developr by with round boulders and	f may represe gravel pit. It to subround ment. to subround o d interbeds o	ent a sequence cobbles and f sand and clo	se of gral boulders 3-horizon ast-suppo
	and beh a b c d f. g	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddisk with strong sto . Reddish-brow Brown to redd . Grayish-browr	sand, gravel, parriers. pale-brownish I, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poor h sandy grave	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der el to gravelly sand	esser silt wi gravel. avel with c ith trace g vish-brown ed in zones ey silt to silt nse, grave with round	ih cobbles ar open-work gro ravel; also rej gravelly sand s. y clay with he ly clayey sand d to subround	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla cobbles and 105	nits c, e and back wall of g vel with round soil develop ay with round boulders and i 110	f may represe gravel pit. d to subround ment. to subround o d interbeds o	ent a sequence cobbles and f sand and clo	ce of gra boulders 3-horizon ast-suppo
	and beh a b c d f. g	crossbedded, ind longshore k . Interbedded, . Crossbedded . Reddish-brow . Brown, reddisk with strong sto . Reddish-brow Brown to redd . Grayish-browr	sand, gravel, parriers. pale-brownish I, pale-grayish n, poorly bed h-brown, olive age II carbond n, dense, poor h sandy grave	, lean clay, and le h-gray, sand and h-brown, sandy gr ded, clayey silt w e-brown, and gray ate and cemente orly bedded claye orly bedded. der el to gravelly sand	esser silt wi gravel. avel with c ith trace g vish-brown ed in zones ey silt to silt nse, grave with round	ih cobbles ar open-work gro ravel; also rej gravelly sand s. y clay with he ly clayey sand d to subround	nd boulders; u ovel lenses. Dresented in k to sandy gra eavy B-horizon d to sandy cla cobbles and 105	nits c, e and back wall of g vel with round soil develop ay with round boulders and i 110	f may represe gravel pit. d to subround ment. to subround o d interbeds o	ent a sequence cobbles and f sand and clo i 120 ch = 5 feet xaggeration)	ce of grat boulders 3-horizon ast-suppo

	°W						\$73°W -			1	
) -											
5				1g							
								FILL			
								•••			
	10			25-22							
?!								· 1c.			
		b. Crossbed c. Reddish-k	led, pale-brow ded, pale-gra prown, poorly b	yish-brown, so bedded, clay	andy gravel v	vith open-wor ce gravel; als	k gravel lenses o represented	l in back wall d			
					U ,	• •	sand to sandy	giaver with to		euna copples	and boul
5		with strong e. Reddish-b f. Brown to r	g stage II carb prown, dense, eddish brown,	onate and co poorly bedde poorly beddo	emented in z ed clayey silt t ed. dense, gi	ones. o silty clay wi avelly clayey	th heavy B-hor sand to sandy	izon soil devel y clay with rou	opment. nd to subrou	ind cobbles a	ind B-horiz
		with strong e. Reddish-b f. Brown to r	g stage II carb prown, dense, eddish brown,	onate and co poorly bedde poorly beddo	emented in z ed clayey silt t ed. dense, gi	ones. o silty clay wi avelly clayey	th heavy B-hor	izon soil devel y clay with rou	opment. nd to subrou	ind cobbles a	ind B-horiz
	150	with strong e. Reddish-b f. Brown to r	g stage II carb prown, dense, eddish brown,	onate and co poorly bedde poorly beddo	emented in z ed clayey silt t ed. dense, gi	ones. o silty clay wi avelly clayey	th heavy B-hor sand to sandy	izon soil devel y clay with rou	opment. nd to subrou	ind cobbles a	ind B-horiz
	150	with strong e. Reddish-k f. Brown to r g. Grayish-b	g stage II carb prown, dense, eddish brown, rown sandy gr	onate and co poorly bedde poorly bedde avel to grave	emented in z ed clayey silt t ed. dense, gr Ily sand with r	ones. To silty clay with avelly clayey ound to subro	th heavy B-hor sand to sandy ound cobbles	izon soil devel y clay with rou and boulders i 185	opment. nd to subrou and interbec	ind cobbles a ds of sand and i	nd B-horiz d clast-su
	150	with strong e. Reddish-k f. Brown to r g. Grayish-b	g stage II carb prown, dense, eddish brown, rown sandy gr	onate and co poorly bedde poorly bedde avel to grave	emented in z ed clayey silt t ed. dense, gr Ily sand with r	ones. To silty clay with avelly clayey ound to subro	th heavy B-hor sand to sandy bund cobbles i 180	izon soil devel y clay with rou and boulders i 185	opment. nd to subrou and interbec	ind cobbles a ds of sand and i	nd B-horiz d clast-su
145	150	with strong e. Reddish-k f. Brown to r g. Grayish-b	g stage II carb prown, dense, eddish brown, rown sandy gr	onate and co poorly bedde poorly bedde avel to grave	emented in z ed clayey silt t ed. dense, gr Ily sand with r	ones. To silty clay with avelly clayey ound to subro	th heavy B-hor sand to sandy bund cobbles i 180	izon soil devel y clay with rou and boulders i 185	opment. nd to subrou and interbec	and cobbles a ds of sand and i 195	nd B-horiz d clast-su

+15 <mark> </mark> \$73° W											
+10									·····		
+5]g							
								FI	LL		lg
0 -			• • •								
2.			554	8 -4	3.1						
-5 -											
-10		ded, sand,	gravel, lean d	•	•		e Lake Bonnevi oulders; units c,		•		
	b. Crossbea	dded, pale-		n, sandy grav	el with open	-work gravel le			- 4		
-15	- d. Brown, re	eddish-browr		n, and grayish	n-brown grav		ented in back v andy gravel wi	-		oles and bould	ders, clasts
	e. Reddish- f. Brown to	brown, dens reddish brov	se, poorly bec wn, poorly be	dded clayey dded. dense	silt to silty clo e, gravelly clo	ayey sand to s	B-horizon soil c sandy clay with	n round to sub	pround cobble		
-20	1	i			i	i	bles and boul	İ	İ	i	1
220	225	230	235	240	245	250	255	260	265	270	275
							Scale	in feet			
WESTERN									SCALE: 1 inc (no vertical e) South Trench '	kaggeration)	
GEOLOGIC								Tr	ench logged by May 30-3		n

March 25-26, 2020

March 25-26, 2020

Distance in feet

SCALE: 1 inch = 40 feet (no vertical exaggeration) East to West trending 257°N Unit and textural contacts are approximate and inferred

APPENDIX B

ReMi Survey Results

Shear Wave Velocity Profile ReMi Line-01

Dispersion Curve and Slowness Spectrum

Dispersion Curve Showing Picks and Fit

APPENDIX C

Direct Shear Test Results

								Chair		Custod					2B			GES
Company Name:	1-1		0	- Ì.,	1	En		_			Requir	bo		702 6			oEnvironmen	tal Services Inc.
Project Number:	Gone 528-0	ric	50	Dre	<u>ch</u>	Eng	pineer	-ng			Incolum	cu	4	2702 Souti	Phone: 801			Lake, UT 84119 x: 801.270.9401
Address:	4426	Car	nite or	0		Part I				Specia	Unstruc	tions:						
Contact Name:	Jordan		uli		ive			1	1	Stan								
Phone Number:	80-327.		1	Fax:	1	The states	1 Janis	19		T	h Service	. Nun	nber of I	Days:	A	ppro	ved:	
Email:	Jordani	2			an of	Pch	Ca	m	-		ple Type				** Contain			
Project Name:	Jordan (Gravel)	Pit	- 1	Jere	ionn	ent	_			S - Soi			C - Cor	ncrete	B - Bag		T - Tube	
Location:			-		-p.				-	G - Ge	osynthet	ic	O - Oth		Bk - Buck			-
Client:									1	R - Ro					J - Jar			
	1		ž								Anal	ysis						
Sample Identification	Depth	Sample Type*	Container Type**	N. S. S.											Instruct	tions	/Comment	s
B-2	35 -	2	Rim	82										2.4	.8	15	ť	
B-2	40 -	۶		X										R,4	,84	5	F	
B-3	75'	s	Y	()	-									2.5	, 5, 1	0	KSt	\subseteq
				2						1				,				
									1									
							+	<u> </u>	<u> </u>									
		\vdash	\vdash						-	1								
		\vdash								+		_						
										-								
																_		
									<u> </u>									
										1,								
Relinquished Dorde	a Cip			Date: 5	- 51-	30	Receiv	ed By:	\rightarrow	JIX-	V	7	Date: 9 Time	131/2	Re	sults	Sent By:	
 Hazardous Material Contaminated 	L [a mile L	219)		IGES	Project 1	Vumbe		; É		 Existi New (ng Clie	nt Da	ite: me		

Z:\FORMS\[CHAIN_OF_CUSTODY.xls]CHAIN

Test type: Inundated

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Date: 4/9/2020

By: EH

Boring No.: B-2 Sample: 8 Depth: 35'

Sample Description: Grey clay

Sample type: Undisturbed-trimmed from ring

rost type. manaated						
Lateral displacement (in.): 0.3						
Shear rate (in./min): 0.0005						
Specific gravity, Gs: 2.70	Assumed					
	Sam	ple 1	Sam	ole 2	Sam	ple 3
Nominal normal stress (psf)	80	000	40	00	20	000
Peak shear stress (psf)	42	237	20	61	12	254
Lateral displacement at peak (in)		238	0.2	73		099
Load Duration (min)		512	25			512
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample height (in)	0.994	0.918	0.997	0.950	0.994	0.951
Sample diameter (in)		2.416	2.413	2.413	2.417	2.417
Wt. rings + wet soil (g)	189.14	182.84	191.38	187.07	189.06	185.56
Wt. rings (g)	43.02	43.02	44.79	44.79	43.36	43.36
Wet soil + tare (g)	288.86		288.86		288.86	
Dry soil + tare (g)	250.46		250.46		250.46	
Tare (g)	121.68		121.68		121.68	
Water content (%)		24.2	29.8	26.0	29.8	26.7
Dry unit weight (pcf)	94.1	101.9	94.3	99.0	93.7	97.9
Void ratio, e, for assumed Gs	0.79	0.65	0.79	0.70	0.80	0.72
Saturation (%)*	101.7	100.0	102.4	100.0	100.9	100.0
φ' (deg) 27		Average o	f 3 samples	Initial	Pre-shear	
c' (psf) 166		Water	content (%)	29.8	25.6	
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	94.1	99.6	

Comments: Test specimens swelled at 100 psf load step.

Entered by:_____ Reviewed:_____

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Boring No.: B-2 Sample: 8

Depth: 35'

Nominal norm	nal stress $= 80$	00 psf	Nominal norr	nal stress = 40	00 psf	Nominal norn		00 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress			Shear Stress			Shear Stress	Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000
0.002	312	-0.002	0.002	53	-0.003	0.002	65	-0.001
$0.005 \\ 0.007$	646 928	-0.003 -0.004	$0.005 \\ 0.007$	187 325	-0.004 -0.004	0.005 0.007	188 277	-0.001 -0.001
0.010	1161	-0.004	0.007	439	-0.004	0.007	286	-0.001
0.012	1351	-0.006	0.012	548	-0.006	0.012	304	-0.002
0.014	1530	-0.007	0.014	646	-0.006	0.014	379	-0.002
0.019	1863	-0.008	0.019	768	-0.008	0.019	507	-0.003
0.024 0.029	2142 2380	-0.010 -0.011	0.024 0.029	939 1085	-0.009 -0.010	0.024 0.029	609 701	-0.004 -0.005
0.029	2580	-0.011	0.029	1083	-0.010	0.029	701 773	-0.003
0.039	2824	-0.013	0.039	1269	-0.012	0.039	780	-0.007
0.044	3017	-0.014	0.044	1369	-0.013	0.044	889	-0.008
0.049	3191	-0.015	0.049	1466	-0.014	0.049	958	-0.008
0.054	3343	-0.015	0.054	1554	-0.015	0.054	1019	-0.008
0.059 0.064	3484 3611	-0.016 -0.017	0.059 0.064	1634 1704	-0.015 -0.016	0.059 0.064	1075 1121	-0.009 -0.009
0.064 0.069	3721	-0.017	0.064 0.069	1704	-0.016	0.064 0.069	1121	-0.009
0.009	3809	-0.018	0.009	1798	-0.010	0.074	1189	-0.009
0.079	3876	-0.019	0.079	1838	-0.017	0.079	1213	-0.009
0.084	3942	-0.020	0.084	1875	-0.018	0.084	1228	-0.010
0.089	4002	-0.020	0.089	1901	-0.018	0.089	1246	-0.010
0.094 0.099	4047 4080	-0.021 -0.021	0.094 0.099	1914 1924	-0.019 -0.020	0.094 0.099	1249 1254	-0.010 -0.010
0.104	4080	-0.021	0.104	1924	-0.020	0.104	1234	-0.010
0.109	4129	-0.022	0.109	1933	-0.021	0.109	1234	-0.010
0.114	4144	-0.023	0.114	1947	-0.022	0.114	1223	-0.011
0.119	4144	-0.024	0.119	1956	-0.023	0.119	1215	-0.011
0.124	4142	-0.024	0.124	1970	-0.024	0.124	1208	-0.012
0.129 0.134	4141 4142	-0.025 -0.026	0.129 0.134	1982 1993	-0.024 -0.024	0.129 0.134	1202 1190	-0.012 -0.012
0.134	4141	-0.026	0.134	1993	-0.024	0.134	1190	-0.012
0.144	4140	-0.027	0.144	2003	-0.026	0.144	1179	-0.013
0.148	4145	-0.027	0.148	1998	-0.026	0.148	1172	-0.013
0.153	4156	-0.028	0.153	1995	-0.027	0.153	1163	-0.013
0.158 0.163	4169 4185	-0.028 -0.028	0.158 0.163	1981 1972	-0.028 -0.028	0.158 0.163	1156 1149	-0.013 -0.014
0.163	4185	-0.028	0.163	1972	-0.028	0.163	1149	-0.014
0.173	4210	-0.029	0.173	1973	-0.029	0.173	1138	-0.015
0.178	4217	-0.030	0.178	1977	-0.030	0.178	1134	-0.015
0.183	4223	-0.030	0.183	1976	-0.030	0.183	1128	-0.015
0.188	4226 4230	-0.031	0.188 0.193	1982 1989	-0.031	0.188 0.193	1130 1128	-0.015
0.193 0.198	4230 4229	-0.031 -0.032	0.193	1989	-0.031 -0.032	0.193	1128	-0.015 -0.016
0.198	4235	-0.032	0.198	2007	-0.032	0.198	1129	-0.016
0.208	4232	-0.032	0.208	2015	-0.033	0.208	1132	-0.016
0.213	4235	-0.033	0.213	2022	-0.034	0.213	1133	-0.016
0.218	4231	-0.033	0.218	2029	-0.034	0.218	1133	-0.016
0.223 0.228	4234 4236	-0.033 -0.034	0.223 0.228	2034 2039	-0.034 -0.035	0.223 0.228	1132	-0.016 -0.017
0.228 0.233	4236 4235	-0.034 -0.034	0.228 0.233	2039 2045	-0.035	0.228 0.233	1130 1130	-0.017 -0.017
0.238	4237	-0.034	0.238	2049	-0.036	0.238	1128	-0.017
0.243	4236	-0.035	0.243	2051	-0.036	0.243	1126	-0.018
0.248	4236	-0.035	0.248	2054	-0.036	0.248	1125	-0.018
0.253	4235	-0.035	0.253	2056	-0.037	0.253	1123	-0.018
0.258 0.263	4236 4234	-0.036 -0.036	0.258 0.263	2056 2056	-0.038 -0.038	0.258 0.263	1119 1117	-0.019 -0.019
0.263	4234	-0.036	0.263	2050	-0.038	0.263	1117	-0.019
0.273	4234	-0.037	0.273	2060	-0.038	0.273	1113	-0.019
0.278	4229	-0.037	0.278	2057	-0.039	0.278	1113	-0.020
0.282	4227	-0.037	0.282	2057	-0.039	0.282	1110	-0.020
0.287 0.292	4227 4226	-0.038 -0.038	0.287 0.292	2052 2052	-0.039 -0.040	0.287 0.292	1109 1104	-0.020 -0.020
0.292 0.297	4226 4225	-0.038	0.292 0.297	2032 2047	-0.040	0.292 0.297	1104	-0.020
0.300	4225	-0.038	0.300	2047	-0.041	0.300	1102	-0.020
-	1		-			- !		

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20) Location: Gravel Pit Development

Boring No.: B-2 Sample: 8 Depth: 35'

Test type: Inundated

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Date: 4/9/2020

By: EH

Boring No.: B-2 Sample: 9 Depth: 40'

Sample Description: Brown sand with clay Sample type: Undisturbed-trimmed from ring

Lateral displacement (in.): 0.3 Shear rate (in./min): 0.0010						
Specific gravity, Gs: 2.70	Assumed					
	Sam	ple 1	Samj	ole 2	Sam	ple 3
Nominal normal stress (psf)	80	00	40	00	20	000
Peak shear stress (psf)	61	03	30	80	20)35
Lateral displacement at peak (in)	0.2	258	0.1	14	0.0)89
Load Duration (min)	10	00	10	00	10	000
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample height (in)	0.992	0.944	0.994	0.966	0.997	0.974
Sample diameter (in)	2.422	2.422	2.414	2.414	2.417	2.417
Wt. rings + wet soil (g)	189.34	189.35	196.76	195.67	197.52	196.65
Wt. rings (g)	41.52	41.52	44.18	44.18	43.77	43.77
Wet soil + tare (g)	316.53		316.53		316.53	
Dry soil + tare (g)	282.93		282.93		282.93	
Tare (g)	127.31		127.31		127.31	
Water content (%)	21.6	21.6	21.6	20.7	21.6	20.9
Dry unit weight (pcf)	101.3	106.4	105.1	108.0	105.3	107.7
Void ratio, e, for assumed Gs	0.66	0.58	0.60	0.56	0.60	0.56
Saturation (%)*	87.9	100.0	96.5	100.0	97.1	100.0
φ' (deg) 35		Average o	f 3 samples	Initial	Pre-shear	
c' (psf) 524		Water	content (%)	21.6	21.1	
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	103.9	107.4	

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Boring No.: B-2 Sample: 9

Depth: 40'

	it Develo					Depth:		
	nal stress = 80	1	Nominal norn		-	Nominal norn		_
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
					Displacement			
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000
0.002	253	-0.001	0.002	7	0.000	0.002	174	0.000
0.005 0.007	455 639	-0.001 -0.001	0.005 0.007	164 274	$0.000 \\ 0.000$	0.005 0.007	356 489	$0.000 \\ 0.000$
0.007	818	-0.001	0.007	408	-0.001	0.007	489 616	-0.001
0.010	1011	-0.002	0.010	620	-0.001	0.010	726	-0.001
0.012	1207	-0.003	0.012	806	-0.001	0.012	820	-0.001
0.019	1565	-0.004	0.019	1048	-0.001	0.019	1008	-0.001
0.024	1887	-0.005	0.024	1369	-0.002	0.024	1173	-0.001
0.029	2195	-0.006	0.029	1623	-0.002	0.029	1320	0.000
0.034	2477	-0.007	0.034	1793	-0.002	0.034	1449	0.000
0.039	2732	-0.008	0.039 0.044	1984	-0.003	0.039	1559	0.001
0.044 0.049	2960 3166	-0.009 -0.010	0.044 0.049	2154 2293	-0.002 -0.002	0.044 0.049	1657 1742	0.001 0.003
0.049	3359	-0.010	0.049	2423	-0.002	0.049	1814	0.003
0.059	3532	-0.011	0.059	2531	-0.002	0.059	1879	0.005
0.064	3698	-0.012	0.064	2625	-0.002	0.064	1931	0.007
0.069	3838	-0.012	0.069	2712	-0.002	0.069	1974	0.007
0.074	3967	-0.013	0.074	2798	-0.002	0.074	2001	0.009
0.079	4097	-0.014	0.079	2868	-0.001	0.079	2028	0.010
0.084	4219	-0.014	0.084	2932	-0.001	0.084	2027	0.011
0.089 0.094	4341	-0.015	0.089 0.094	2983	0.000	0.089 0.094	2035	0.012
0.094 0.099	4457 4557	-0.015 -0.015	0.094 0.099	3018 3041	$0.000 \\ 0.000$	0.094	2030 2018	0.014 0.015
0.104	4654	-0.015	0.104	3063	0.000	0.104	1986	0.015
0.109	4786	-0.016	0.109	3068	0.001	0.109	1883	0.016
0.114	4900	-0.016	0.114	3080	0.002	0.114	1765	0.017
0.119	5004	-0.017	0.119	3078	0.002	0.119	1698	0.017
0.124	5104	-0.017	0.124	3075	0.002	0.124	1659	0.017
0.129	5201	-0.017	0.129	3070	0.002	0.129	1655	0.016
0.134	5293	-0.018	0.134	3056	0.002	0.134	1655	0.016
0.139 0.144	5378 5457	-0.019 -0.019	0.139 0.144	3043 3028	0.002 0.002	0.139 0.144	1662 1668	0.016 0.015
0.144	5524	-0.019	0.144	3028	0.002	0.144	1677	0.015
0.140	5581	-0.020	0.153	2986	0.002	0.153	1688	0.015
0.158	5626	-0.020	0.158	2987	0.001	0.158	1703	0.015
0.163	5662	-0.020	0.163	3002	0.000	0.163	1715	0.015
0.168	5657	-0.020	0.168	3012	0.000	0.168	1730	0.015
0.173	5666	-0.021	0.173	3028	-0.001	0.173	1740	0.015
0.178	5675	-0.021	0.178	3032	-0.001	0.178	1753	0.015
0.183 0.188	5688 5684	-0.021 -0.021	0.183 0.188	3029 3016	-0.002 -0.002	0.183 0.188	1761 1767	0.015 0.015
0.188	5639	-0.021	0.188	2998	-0.002	0.188	1707	0.015
0.193	5593	-0.022	0.193	2998	-0.003	0.195	1779	0.015
0.203	5633	-0.023	0.203	2924	-0.004	0.203	1782	0.015
0.208	5689	-0.024	0.208	2846	-0.004	0.208	1783	0.015
0.213	5762	-0.025	0.213	2789	-0.005	0.213	1784	0.015
0.218	5827	-0.025	0.218	2767	-0.006	0.218	1782	0.015
0.223	5887	-0.025	0.223	2770	-0.007	0.223	1783	0.015
0.228	5941	-0.026	0.228	2782	-0.008	0.228	1780	0.015
0.233 0.238	5981 6019	-0.026 -0.026	0.233 0.238	2812 2839	-0.009 -0.009	0.233 0.238	1777 1775	0.015 0.015
0.238 0.243	6019 6050	-0.026	0.238 0.243	2839	-0.009	0.238 0.243	1769	0.015
0.243	6076	-0.027	0.243	2803	-0.010	0.243	1763	0.015
0.253	6087	-0.028	0.253	2920	-0.011	0.253	1756	0.015
0.258	6103	-0.028	0.258	2938	-0.011	0.258	1747	0.015
0.263	6100	-0.028	0.263	2957	-0.012	0.263	1737	0.015
0.268	6091	-0.028	0.268	2971	-0.013	0.268	1730	0.015
0.273	6064	-0.029	0.273	2990	-0.013	0.273	1720	0.015
0.277	6026 5070	-0.029	0.278	3008	-0.013	0.278	1710	0.015
0.282 0.287	5970 5905	-0.029 -0.029	0.282 0.287	3027 3041	-0.014 -0.015	0.283 0.287	1701 1697	0.015 0.015
U / A /					-0.015	0.287 0.292	1697 1687	0.015
	5856	_0 070						
0.292 0.297	5856 5849	-0.029 -0.030	0.292 0.297	3049 3063	-0.013	0.292	1679	0.015

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20) Location: Gravel Pit Development

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Date: 4/9/2020

By: EH

Boring No.: B-3 Sample: Depth: 75'

Sample Description: Brown clayey sand Sample type: Undisturbed-trimmed from ring

5				1 21		
Test type: Inundated						
Lateral displacement (in.): 0.3						
Shear rate (in./min): 0.0009						
Specific gravity, Gs: 2.70	Assumed					
1 0 57	Sam	ple 1	Sam	ole 2	Sam	ple 3
Nominal normal stress (psf)		000	50			500
Peak shear stress (psf)		/35	30			659
Lateral displacement at peak (in)		183	0.2			268
		995		92 95		995
Load Duration (min)						
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample height (in)		0.935	0.996	0.938	0.986	0.938
Sample diameter (in)	2.413	2.413	2.414	2.414	2.417	2.417
Wt. rings + wet soil (g)	173.81	187.68	176.37	188.98	179.82	190.10
Wt. rings (g)	44.10	44.10	43.05	43.05	40.73	40.73
Wet soil + tare (g)	264.29		264.29		264.29	
Dry soil + tare (g)	250.55		250.55		250.55	
Tare (g)			127.02		127.02	
Water content (%)	11.1	23.0	11.1	21.6	11.1	19.3
Dry unit weight (pcf)	97.7	103.9	100.3	106.4	105.4	110.7
Void ratio, e, for assumed Gs		0.62	0.68	0.58	0.60	0.52
Saturation (%)*		100.0	44.1	100.0	50.1	100.0
φ' (deg) 33			f 3 samples		Pre-shear	
c'(psf) = 0			content (%)		21.3	
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	101.1	107.0	

Comments:

Test specimens #1 and #2 contain vertical clay seam.

Entered by:_____ Reviewed:_____

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20)

Location: Gravel Pit Development

Boring No.: B-3 Sample:

Depth: 75'

Ulaverr			-				13	
Nominal norn	hal stress $= 10$	000 psf	Nominal norn	nal stress $= 50$	00 psf	Nominal norn	nal stress $= 25$	00 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement		Displacement	Displacement	Shear Stress		Displacement		Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000
0.000	257	-0.001	0.000	58	-0.002	0.000	84	-0.003
	237 586			58 180			84 179	
0.005		-0.002	$0.005 \\ 0.007$		-0.002	0.005 0.007	207	-0.004 -0.004
0.007	863	-0.002		326 484	-0.003		207 246	-0.004
0.010	1188	-0.003	0.010		-0.003	0.010		
0.012	1484	-0.004	0.012	631	-0.004	0.012	321	-0.004
0.014	1755	-0.005	0.014	786	-0.004	0.014	410	-0.005
0.019	2223	-0.006	0.019	1076	-0.006	0.019	552	-0.007
0.024	2338	-0.007	0.024	1331	-0.008	0.024	667	-0.008
0.029	2824	-0.008	0.029	1551	-0.008	0.029	779	-0.009
0.034	3169	-0.009	0.034	1186	-0.009	0.034	882	-0.011
0.039	3482	-0.010	0.039	1513	-0.009	0.039	974	-0.012
0.044	3769	-0.011	0.044	1843	-0.010	0.044	1062	-0.013
0.049	4037	-0.012	0.049	2011	-0.011	0.049	1141	-0.014
0.054	4289	-0.013	0.054	2159	-0.012	0.054	1215	-0.015
0.059	4521	-0.014	0.059	2288	-0.012	0.059	1284	-0.015
0.064	4741	-0.014	0.064	2407	-0.012	0.064	1343	-0.015
0.069	4941	-0.014	0.069	2510	-0.013	0.069	1390	-0.016
0.074	5123	-0.015	0.074	2601	-0.013	0.074	1433	-0.016
0.079	5296	-0.016	0.079	2680	-0.014	0.079	1474	-0.017
0.084	5460	-0.017	0.084	2750	-0.014	0.084	1508	-0.017
0.089	5601	-0.017	0.089	2808	-0.014	0.089	1540	-0.018
0.094	5737	-0.017	0.094	2858	-0.015	0.094	1553	-0.019
0.099	5859	-0.017	0.099	2898	-0.015	0.099	1554	-0.019
0.104	5970	-0.017	0.104	2937	-0.015	0.104	1564	-0.019
0.109	6076	-0.018	0.109	2969	-0.015	0.109	1580	-0.020
0.114	6172	-0.018	0.114	2992	-0.015	0.114	1589	-0.020
0.119	6257	-0.019	0.119	3001	-0.016	0.119	1589	-0.020
0.124	6340	-0.019	0.124	3001	-0.016	0.124	1589	-0.021
0.129	6410	-0.019	0.129	2992	-0.016	0.129	1595	-0.021
0.134	6472	-0.020	0.134	2975	-0.016	0.134	1598	-0.022
0.139	6514	-0.020	0.139	2960	-0.016	0.139	1602	-0.022
0.144	6565	-0.020	0.144	2944	-0.016	0.144	1609	-0.022
0.148	6601	-0.020	0.148	2925	-0.017	0.148	1609	-0.023
0.153	6642	-0.020	0.153	2919	-0.017	0.153	1612	-0.023
0.158	6667	-0.021	0.158	2920	-0.017	0.158	1612	-0.024
0.163	6699	-0.021	0.163	2922	-0.017	0.163	1614	-0.024
0.168	6710	-0.021	0.168	2929	-0.017	0.168	1616	-0.025
0.173	6719	-0.021	0.173	2944	-0.018	0.173	1615	-0.025
0.178	6723	-0.022	0.178	2952	-0.018	0.178	1615	-0.025
0.183	6735	-0.022	0.183	2958	-0.018	0.183	1619	-0.026
0.188	6724	-0.022	0.188	2974	-0.019	0.188	1622	-0.026
0.193	6719	-0.022	0.193	2987	-0.019	0.193	1624	-0.026
0.198	6715	-0.022	0.198	2999	-0.019	0.198	1634	-0.026
0.203	6711	-0.022	0.203	2999	-0.019	0.203	1634	-0.026
0.208	6698	-0.022	0.208	3008	-0.020	0.208	1641	-0.027
0.213	6692	-0.022	0.213	3007	-0.020	0.213	1642	-0.027
0.218	6693	-0.023	0.218	3009	-0.020	0.218	1647	-0.027
0.223	6690	-0.023	0.223	3004	-0.020	0.223	1650	-0.027
0.228	6692	-0.024	0.228	2997	-0.021	0.228	1653	-0.027
0.233	6679	-0.024	0.233	2993	-0.021	0.233	1654	-0.028
0.238	6689	-0.024	0.238	2992	-0.021	0.238	1657	-0.028
0.243	6678	-0.025	0.243	2994	-0.021	0.243	1656	-0.028
0.248	6682	-0.025	0.248	3002	-0.022	0.248	1657	-0.028
0.253	6679	-0.025	0.253	3013	-0.022	0.253	1655	-0.029
0.258	6682	-0.025	0.258	3017	-0.023	0.258	1658	-0.029
0.263	6676	-0.025	0.263	3033	-0.023	0.263	1657	-0.029
0.268	6678	-0.026	0.268	3042	-0.024	0.268	1659	-0.029
0.273	6672	-0.026	0.273	3048	-0.024	0.273	1655	-0.029
0.278	6659	-0.026	0.278	3047	-0.024	0.278	1657	-0.030
0.282	6655	-0.027	0.282	3052	-0.024	0.282	1654	-0.030
0.287	6675	-0.027	0.287	3058	-0.025	0.287	1649	-0.030
0.292	6687	-0.027	0.292	3062	-0.025	0.292	1648	-0.030
0.297	6712	-0.028	0.297	3059	-0.025	0.297	1648	-0.031
0.300	6729	-0.028	0.300	3062	-0.025	0.300	1649	-0.031
				–				

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-015 (528-005-20) Location: Gravel Pit Development

STM D3080)							© IGES 2
Project: Gordon Geotechn	ical Engi	neering		Bo	ring No.:		
No: M02106-006 (528-	002-18)				Sample:	Sample	С
ocation: View 62					Depth:	•	
Date: 4/2/2018				Sample F		Brown san	d
By: JDF							compacted
Test type: 1	nundated				unit weight		pcf
Lateral displacement (in.):	0.3			Dij	at		(%) w
Shear rate (in./min):	0.0086			Com	paction spe	cifications:	
Specific gravity, Gs:	2.65						γ_d max
			ple 1		ple 2		ple 3
Nominal normal			500		00		500
Peak shear Lateral displacement a)19)57	0.0	80		589
	ation (min)		19	8			042 59
		Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample	height (in)		0.976	1.002	0.982	0.995	0.980
Sample di	ameter (in)	2.409	2.409	2.414	2.414	2.423	2.423
Wt. rings + v	wet soil (g)	197.49	207.07	199.36	209.02	195.44	205.97
	t. rings (g)		44.63	44.79	44.79	41.95	41.95
	l + tare (g)			313.38		313.38	
Dry sol	l + tare (g) Tare (g)			302.13 122.19		302.13 122.19	
Water c	ontent (%)		12.9	6.3	12.9	6.3	13.5
	eight (pcf)		123.2	120.8	123.2	119.9	121.7
Void ratio, e, for a			0.34	0.37	0.34	0.38	0.36
Satur	ation (%)*	44.9	100.0	44.9	100.0	43.7	100.0
φ' (deg)	38			of 3 samples	Initial	Pre-shear	
<u>c' (psf)</u>	499			content (%)	6.3	13.1	
e-shear saturation set to 100% for phase			Dry unit	weight (pcf)	120.5	122.7	
3 4000				5000			
4500 4000 3500 2500 2000		********					1
4000 3500 2500 2500				♦ 45	500 psf □3000	psf ∆1500 psf	
	TUTTE		5	5000			<u>} </u>
			fi fi	1			
	*****	XXXXXXXXXXXXXX	Nominal shear stress (psf)	1000	-		
500			res				
0	+ + +		r st	1			and the second se
0.016 =				8000			
0.014			als	1		and the second s	
0.012	COMP.	CONTRACTOR OF		2000		1	
0.008	- X0000		with S	1	X		
0.006	+ +		2				
			1	.000			
0.002							
					1		
0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 0.002 0.000 0.002				0 1			

Nominal normal stress (psf)

Entered by: Reviewed:_

0.00

0.05

0.10

0.15

Lateral displacement (in)

0.20

0.25

0.30

C:\Users\nickb\Desktop\Lab_Temp\[DS_GCv4.xlsm]1

6000

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-006 (528-002-18)

Location: View 62

Boring No.: Sample: Sample C

Denth:

View 62			Depth:					
Nominal norm	inal normal stress = 4500 psf Nominal normal stress = 3000 psf Nominal normal stress = 15					00 psf		
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacemen
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.002	366	0.000	0.002	397	0.000	0.002	183	0.000
0.005	702	0.000	0.005	605	-0.001	0.005	364	0.000
0.007	1029	0.000	0.007	747	-0.001	0.007	538	0.000
0.010	1337	0.000	0.010	1018	-0.001	0.010	669	-0.001
0.012	1663	0.000	0.012	1237	-0.001	0.012	803	-0.001
0.017	2220	-0.001	0.017	1680	-0.001	0.017	1086	-0.001
0.022	2676	-0.002	0.022	2085	0.000	0.022	1306	0.000
0.027	3097	-0.002	0.027	2397	0.001	0.027	1407	0.001
0.032	3400	-0.001	0.032	2636	0.001	0.032	1496	0.002
0.037	3614	0.000	0.037	2803	0.003	0.037	1553	0.003
0.042	3752	0.000	0.042	2924	0.005	0.042	1589	0.005
0.047	3844	0.002	0.047	2973	0.006	0.047	1585	0.006
0.052	3883	0.003	0.052	2980	0.007	0.052	1572	0.007
0.057	3919	0.004	0.057	2964	0.008	0.057	1552	0.009
0.062	3917	0.005	0.062	2937	0.009	0.062	1513	0.010
0.067	3901	0.006	0.067	2897	0.010	0.067	1473	0.011
0.072	3888	0.006	0.072	2819	0.012	0.072	1438	0.011
0.077	3836	0.008	0.077	2752	0.013	0.077	1396	0.012
0.082	3776	0.008	0.082	2681	0.013	0.082	1355	0.013
0.087	3674	0.009	0.087	2617	0.013	0.087	1326	0.013
0.092	3585	0.010	0.092	2569	0.013	0.092	1299	0.013
0.097	3476	0.010	0.097	2546	0.013	0.097	1284	0.013
0.102	3400	0.011	0.102	2526	0.014	0.102	1273	0.013
0.107	3337	0.011	0.107	2490	0.014	0.107	1266	0.013
0.112	3288	0.011	0.112	2479	0.014	0.112	1230	0.014
0.117	3243	0.011	0.117	2480	0.014	0.117	1233	0.014
0.122	3196	0.011	0.122	2478	0.014	0.122	1254	0.014
0.127	3175	0.011	0.127	2472	0.014	0.127	1263	0.014
0.132	3152	0.011	0.132	2493	0.014	0.132	1248	0.014
0.137	3165	0.011	0.137	2496	0.014	0.137	1265	0.014
0.142	3152	0.011	0.142	2497	0.014	0.142	1279	0.014
0.147	3141	0.011	0.147	2508	0.014	0.147	1285	0.014
0.152	3160	0.011	0.152	2513	0.014	0.152	1288	0.014
0.157	3154	0.011	0.157	2517	0.014	0.157	1291	0.014
0.162	3173	0.011	0.162	2537	0.014	0.162	1303	0.014
0.167	3175	0.010	0.167	2543	0.014	0.167	1295	0.014
0.172	3175	0.010	0.172	2548	0.014	0.172	1303	0.013
0.177	3154	0.010	0.177	2550	0.014	0.177	1303	0.013
0.182	3188	0.009	0.182	2573	0.014	0.182	1304	0.013
0.187	3186	0.009	0.187	2569	0.014	0.187	1308	0.013
0.192	3214	0.009	0.192	2570	0.014	0.192	1298	0.013
0.197	3214	0.009	0.197	2589	0.014	0.197	1295	0.013
0.202	3220	0.008	0.202	2579	0.013	0.202	1295	0.013
0.207	3238	0.008	0.207	2583	0.013	0.207	1301	0.013
0.212	3256	0.008	0.212	2572	0.013	0.212	1300	0.013
0.217	3261	0.008	0.217	2578	0.013	0.217	1313	0.012
0.222	3288	0.008	0.222	2574	0.013	0.222	1314	0.012
0.227	3314	0.007	0.227	2583	0.013	0.227	1316	0.012
0.232	3321	0.007	0.232	2579	0.013	0.232	1322	0.012
0.237	3321	0.007	0.237	2591	0.012	0.237	1327	0.012
0.242	3324	0.006	0.242	2589	0.012	0.242	1338	0.012
0.247	3332	0.006	0.247	2592	0.012	0.247	1345	0.012
0.252	3335	0.006	0.252	2602	0.011	0.252	1351	0.011
0.257	3332	0.006	0.257	2596	0.011	0.257	1363	0.011
0.262	3345	0.006	0.262	2609	0.011	0.262	1368	0.011
0.267	3371	0.005	0.267	2608	0.010	0.267	1376	0.011
0.272	3376	0.005	0.272	2619	0.010	0.272	1386	0.011
0.277	3376	0.005	0.277	2631	0.010	0.277	1390	0.011
0.282	3402	0.004	0.282	2639	0.009	0.282	1398	0.010
0.287	3371	0.004	0.287	2659	0.009	0.287	1408	0.010
0.292	3389	0.003	0.292	2674	0.009	0.292	1421	0.010
0.297 0.299	3405	0.003	0.297	2680	0.009	0.297	1426	0.010
11/00	3418	0.003	0.300	2692	0.009	0.300	1420	0.010

Comments:

Test specimens swelled upon inundation.

Entered by: EH Reviewed: M

C:\Users\nickb\Desktop\Lab_Temp\[DS_GC_4-point_v4.xlsm]1

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-006 (528-002-18)

Boring No.: TP-5

Sample: Depth:

Location: View 62

V1ew 62						Depth:			Substitution		
Nominal norn	nal stress = 40	00 psf	Nominal norn	nal stress = 30	00 psf	Nominal norn	nal stress = 20	00 psf	Nominal norm	al stress $= 100$	0 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement		Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displaceme
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.002	480	0.000	0.002	205	-0.001	0.002	203	0.000	0.002	67	-0.002
0.005	888	0.000	0.005	442	-0.001	0.005	327	0.000	0.005	120	-0.002
0.007	1182	-0.001	0.007	704	-0.002	0.007	545	0.000	0.007	254	-0.003
0.010	1373	-0.001	0.010	821	-0.002	0.010	704	-0.001	0.010	311	-0.003
0.012	1595	-0.001	0.012	926	-0.002	0.012	860	-0.001	0.012	391	-0.003
0.017	1913	-0.001	0.017	1223	-0.003	0.017	1083	-0.001	0.017	514	-0.004
0.022 0.027	2147 2310	-0.001 -0.001	0.022 0.027	1435 1606	-0.003 -0.003	0.022	1274	-0.001	0.022	617	-0.004
0.027	2310	-0.001	0.027	1754	-0.003	0.027 0.032	1392 1505	0.000 0.000	0.027	689	-0.004
0.032	2419	-0.001	0.032	1884	-0.003	0.032	1505	0.000	0.032 0.037	755 812	-0.004
0.042	2527	-0.001	0.042	1984	-0.002	0.042	1614	0.001	0.037	812	-0.003 -0.003
0.047	2542	0.000	0.047	2067	-0.002	0.047	1638	0.002	0.042	904	-0.003
0.052	2548	0.000	0.052	2124	-0.001	0.052	1643	0.004	0.052	933	-0.002
0.057	2550	0.000	0.057	2160	-0.001	0.057	1636	0.005	0.057	961	0.000
0.062	2553	0.001	0.062	2182	-0.001	0.062	1625	0.005	0.062	984	0.001
0.067	2560	0.001	0.067	2196	0.000	0.067	1604	0.006	0.067	1002	0.001
0.072	2568	0.001	0.072	2201	0.000	0.072	1582	0.006	0.072	1007	0.002
0.077	2594	0.001	0.077	2195	0.001	0.077	1558	0.006	0.077	1012	0.003
0.082	2602	0.001	0.082	2188	0.001	0.082	1543	0.006	0.082	1009	0.004
0.087	2625	0.001	0.087	2175	0.001	0.087	1532	0.006	0.087	1006	0.005
0.092	2646	0.001	0.092	2164	0.001	0.092	1527	0.006	0.092	998	0.007
0.097	2653	0.001	0.097	2160	0.001	0.097	1526	0.006	0.097	985	0.007
0.102 0.107	2669 2690	0.001 0.001	0.102 0.107	2163	0.001	0.102	1525	0.006	0.102	967	0.008
0.107	2090	0.001	0.107	2167 2177	0.001 0.001	0.107 0.112	1522 1519	0.006 0.006	0.107	952	0.008
0.112	2720	0.000	0.112	2184	0.001	0.112	1519	0.008	0.112	934	0.009
0.122	2728	0.000	0.122	2189	0.001	0.117	1526	0.000	0.117 0.122	917 900	0.009 0.009
0.127	2746	0.000	0.122	2195	0.001	0.122	1520	0.000	0.122	900 892	0.009
0.132	2764	0.000	0.132	2197	0.001	0.132	1540	0.006	0.132	883	0.009
0.137	2785	0.000	0.137	2203	0.001	0.137	1545	0.006	0.137	880	0.010
0.142	2793	0.000	0.142	2205	0.001	0.142	1553	0.006	0.142	878	0.010
0.147	2801	-0.001	0.147	2209	0.000	0.147	1560	0.006	0.147	872	0.010
0.152	2801	-0.001	0.152	2217	0.000	0.152	1566	0.006	0.152	874	0.010
0.157	2808	-0.001	0.157	2224	0.000	0.157	1573	0.006	0.157	874	0.010
0.162	2813	-0.001	0.162	2233	0.000	0.162	1578	0.006	0.162	874	0.010
0.167	2829	-0.001	0.167	2244	0.000	0.167	1585	0.006	0.167	872	0.010
0.172	2844	-0.001	0.172	2254	0.000	0.172	1586	0.006	0.172	874	0.010
0.177	2852	-0.002	0.177	2261	0.000	0.177	1592	0.006	0.177	867	0.011
0.182 0.187	2865	-0.002	0.182	2269	-0.001	0.182	1596	0.006	0.182	871	0.011
0.187	2873 2883	-0.002 -0.002	0.187 0.192	2274 2279	-0.001	0.187	1606	0.005	0.187	872	0.011
0.192	2883	-0.002	0.192	2279	-0.001 -0.001	0.192 0.197	1611 1614	0.005 0.005	0.192	874	0.011
0.197	2893	-0.002	0.197	2282	-0.001	0.197	1614	0.005	0.197 0.202	876 876	0.011
0.202	2914	-0.002	0.202	2292	-0.001	0.202	1626	0.005	0.202	876 878	0.011 0.011
0.212	2919	-0.003	0.212	2297	-0.002	0.212	1631	0.005	0.207	878	0.011
0.217	2927	-0.003	0.217	2300	-0.002	0.212	1636	0.005	0.212	883	0.011
0.222	2930	-0.003	0.222	2303	-0.002	0.222	1641	0.005	0.222	885	0.010
0.227	2935	-0.003	0.227	2308	-0.002	0.227	1643	0.005	0.227	889	0.010
0.232	2942	-0.003	0.232	2318	-0.002	0.232	1647	0.004	0.232	891	0.010
0.237	2948	-0.003	0.237	2318	-0.002	0.237	1651	0.004	0.237	897	0.010
0.242	2955	-0.003	0.242	2318	-0.002	0.242	1652	0.004	0.242	900	0.010
0.247	2961	-0.003	0.247	2325	-0.003	0.247	1656	0.004	0.247	902	0.010
0.252	2955	-0.004	0.252	2330	-0.003	0.252	1661	0.004	0.252	902	0.010
0.257	2955	-0.004	0.257	2329	-0.003	0.257	1661	0.003	0.257	905	0.010
0.262	2961	-0.004	0.262	2335	-0.003	0.262	1664	0.003	0.262	907	0.010
0.267	2955	-0.004	0.267	2338	-0.003	0.267	1667	0.003	0.267	911	0.010
0.272	2966	-0.004	0.272	2340	-0.003	0.272	1671	0.003	0.272	913	0.010
0.277	2963	-0.004	0.277	2343	-0.003	0.277	1672	0.003	0.277	914	0.010
0.282	2961	-0.005	0.282	2343	-0.004	0.282	1651	0.002	0.282	919	0.010
0.287 0.292	2966	-0.005	0.287	2346	-0.004	0.287	1652	0.002	0.287	920	0.010
0.292	2976 2973	-0.005 -0.005	0.292 0.297	2347 2353	-0.004	0.292	1653	0.002	0.292	925	0.010
0.297	2973	-0.005	0.297	2353	-0.004	0.297	1663	0.001	0.297	930	0.010
0.501	2704	-0.005	0.301	2333	-0.004	0.300	1660	0.001	0.300	931	0.010

(ASTM D3080)

Project: Gordon Geotechnical Engineering No: M02106-006 (528-002-18)

Boring No.: TP-5 Sample: Depth:

Location: View 62

APPENDIX D

Slope Stability Analysis Results

Surface	Ни Туре	Hu
Surface	Custom	1

600	650	700	750
G2			
Grading.slim			
		G2	G2

2013 LiDAR Topography

9	Ни Туре	Hu
j	Custom	1
j	Custom	1
j	Custom	1
Ģ	Custom	1